Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558043

RESUMEN

Complex networks are widespread in real-world environments across diverse domains. Real-world networks tend to form spontaneously through interactions between individual agents. Inspired by this, we design an evolutionary game model in which agents participate in a prisoner's dilemma game (PDG) with their neighboring agents. Agents can autonomously modify their connections with neighbors using reinforcement learning to avoid unfavorable environments. Interestingly, our findings reveal some remarkable results. Exploiting reinforcement learning-based adaptive networks improves cooperation when juxtaposed with existing PDGs performed on homogeneous networks. At the same time, the network's topology evolves from homogeneous to heterogeneous states. This change occurs as players gain experience from past games and become more astute in deciding whether to join PDGs with their current neighbors or disconnect from the least profitable neighbors. Instead, they seek out more favorable environments by establishing connections with second-order neighbors with higher rewards. By calculating the degree distribution and modularity of the adaptive network in a steady state, we confirm that the adaptive network follows a power law and has a clear community structure, indicating that the adaptive network is similar to networks in the real world. Our study reports a new phenomenon in evolutionary game theory on networks. It proposes a new perspective to generate scale-free networks, which is generating scale-free networks by the evolution of homogeneous networks rather than typical ways of network growth and preferential connection. Our results provide new aspects to understanding the network structure, the emergence of cooperation, and the behavior of actors in nature and society.

2.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38572947

RESUMEN

Feedback loops between strategies and the environment are commonly observed in socio-ecological, evolution-ecological, and psychology-economic systems. However, the impact of mutations in these feedback processes is often overlooked. This study proposes a novel model that integrates the public goods game with environmental feedback, considering the presence of mutations. In our model, the enhancement factor of the public goods game combines positive and negative incentives from the environment. By employing replicator-mutator (RM) equations, we provide an objective understanding of the system's evolutionary state, focusing on identifying conditions that foster cooperation and prevent the tragedy of the commons. Specifically, mutations play a crucial role in the RM dynamics, leading to the emergence of an oscillatory tragedy of the commons. By verifying the Hopf bifurcation condition, we establish the existence of a stable limit cycle, providing valuable insights into sustained oscillation strategies. Moreover, the feedback mechanism inherent in the public goods game model offers a fresh perspective on effectively addressing the classic dilemma of the tragedy of the commons.


Asunto(s)
Conducta Cooperativa , Teoría del Juego , Retroalimentación , Evolución Biológica , Mutación
3.
Phys Rev E ; 109(1-1): 014313, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366519

RESUMEN

The existence of neutral species carries profound ecological implications that warrant further investigation. In this paper, we study the impact of neutral species on biodiversity in a spatial tritrophic system of cyclic competition, in which the neutral species are identified as the fourth species that may affect the competition process of the other three species under the rock-paper-scissors (RPS) rule. Extensive simulations showed that neutral species can promote coexistence in a high mobility regime within the system. When coexistence occurs, we found that the state can be maintained by two mechanisms: Species can either (i) adhere to traditional RPS rule or (ii) form patches to resist invasion. Our findings might aid in understanding the impact of neutral species on biodiversity in ecosystems.

4.
J Theor Biol ; 576: 111665, 2024 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-37951564

RESUMEN

While prosocial exclusion has been proposed as a mechanism to maintain cooperation in one-shot social dilemma games, the evolution of prosocial peer exclusion in response to the threat of antisocial peer exclusion, particularly in structured populations, remains insufficiently understood. In this study, we employ an extended spatial public goods game to investigate the evolution of prosocial peer exclusion and its impact on cooperation in the presence of both prosocial and antisocial peer exclusion. Our model encompasses four primary strategies: traditional cooperation and defection, prosocial peer exclusion targeting defectors, and antisocial peer exclusion targeting cooperators. Our findings illuminate that the presence of antisocial peer exclusion significantly disrupts network reciprocity and suppresses cooperation. However, when coexisting with prosocial peer exclusion, it does not undermine the latter's efficacy in upholding cooperation, except in scenarios with low exclusion costs Unlike the cooperation-sustaining cyclic dominance pattern observed in the exclusive presence of prosocial peer exclusion, the co-presence of prosocial and antisocial peer exclusion gives rise to more intricate pathways for maintaining cooperation. These pathways include cyclic dominance involving traditional cooperation, prosocial peer exclusion, and antisocial peer exclusion, or a similar pattern involving traditional defection and the two exclusion strategies, or even cyclic dominance among all four strategies. In essence, our study enhances the theoretical framework concerning the effectiveness of the prosocial exclusion strategy, contributing to a more comprehensive understanding of its dynamics.


Asunto(s)
Conducta Cooperativa , Teoría del Juego
5.
Chaos ; 32(8): 081104, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36049906

RESUMEN

We investigate evolving dynamics of cyclically competing species on spatially extended systems with considering a specific region, which is called the "wildlife refuge," one of the institutional ways to preserve species biodiversity. Through Monte-Carlo simulations, we found that the refuge can play not groundbreaking but an important role in species survival. Species coexistence is maintained at a moderate mobility regime, which traditionally leads to the collapse of coexistence, and eventually, the extinction is postponed depending on the competition rate rather than the portion of the refuge. Incorporating the extinction probability and Fourier transform supported our results in both stochastic and analogous ways. Our findings may provide valuable evidence to assist fields of ecological/biological sciences in understanding the presence and construction of refuges for wildlife with associated effects on species biodiversity.


Asunto(s)
Animales Salvajes , Ecosistema , Animales , Biodiversidad , Modelos Biológicos , Probabilidad
6.
Chaos Solitons Fractals ; 156: 111812, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35075336

RESUMEN

Recent outbreaks of novel infectious diseases (e.g., COVID-19, H2N3) have highlighted the threat of pathogen transmission, and vaccination offers a necessary tool to relieve illness. However, vaccine efficacy is one of the barriers to eradicating the epidemic. Intuitively, vaccine efficacy is closely related to age structures, and the distribution of vaccine efficacy usually obeys a Gaussian distribution, such as with H3N2 and influenza A and B. Based on this fact, in this paper, we study the effect of vaccine efficacy on disease spread by considering different age structures and extending the traditional susceptible-infected-recovery/vaccinator(SIR/V) model with two stages to three stages, which includes the decision-making stage, epidemic stage, and birth-death stage. Extensive numerical simulations show that our model generates a higher vaccination level compared with the case of complete vaccine efficacy because the vaccinated individuals in our model can form small and numerous clusters slower than that of complete vaccine efficacy. In addition, priority vaccination for the elderly is conducive to halting the epidemic when facing population ageing. Our work is expected to provide valuable information for decision-making and the design of more effective disease control strategies.

7.
Sci Rep ; 9(1): 10760, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31341178

RESUMEN

In this paper, we consider an asymmetric reproductive ability on interdependent networks and investigate how this setting affects the evolution of cooperation. In detail, players decide to update their strategies at each step on main network (network B), while for sub network (network A), players update their strategies with a fixed probability p. Obviously, the system restores the traditional case when p = 1, where cooperation can survive by interdependent network reciprocity. And our asymmetric set-up comes into play when p < 1. Numerical simulation results show that our asymmetric coupling will hinder the overall cooperation level for small p. In detail, the introduction of asymmetric reproductive ability urges the formation of symmetry breaking and further weakens the positive impact by location synchronous effect. And the root cause is entirely distinct situation of utility differences on two networks. These observations further demonstrate a class of phenomena on interdependent networks that it would have catastrophic consequences on one network even if a unrelated change only occurs seemingly on another network.

8.
RSC Adv ; 9(53): 30868-30878, 2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35529408

RESUMEN

High-throughput metabolomics can be used to investigate the therapeutic targets and metabolic mechanisms of traditional Chinese medicine (TCM) formulae, which have multiple targets in disease therapy, but it is a great challenge to explore their mechanism of action. Huaxian capsule (HXC) is a classical formula in TCM that has therapeutic effects on a sepsis-associated Qi deficiency and blood stasis syndrome (SQBS). However, its targets and metabolic mechanisms need more investigation. To investigate the therapeutic effects of HXC in the treatment of SQBS and elucidate the potential mechanism, we used a high-throughput metabolomics strategy based on the ultraperformance liquid chromatography/mass spectrometry combined with chemometrics to analyze and identify differential metabolites and pathways. The pathological examination of organs and biochemical indices was also performed to verify the successful establishment of the rat model and protective effects of HXC. Pathological symptoms and biochemical indicators of SQBS rats were reversed by the HXC treatment. A total of 24 potential biomarkers were identified to indicate the difference between the control and model groups; they were closely associated with ten metabolic pathways and regulated by the HXC administration. From the pathway analysis, we further understood the protective activity of HXC against SQBS, which affected amino acid metabolism, molecular transport, small molecule biochemistry and cell signaling as well as vitamin and mineral metabolism. In conclusion, HXC protects against SQBS by modulating the metabolic biomarkers and functional pathways.

9.
RSC Adv ; 9(6): 3351-3358, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35548688

RESUMEN

High-throughput metabolic profiling technology has been used for biomarker discovery and to reveal underlying metabolic mechanisms. Sepsis-induced myocardial dysfunction (SMD) is a common complication in sepsis patients, and severely affects their quality of life. However, the pathogenesis of SMD is currently unclear, and there has been inadequate basic research. In this study, metabolic profiling was explored by liquid chromatography/mass spectrometry (LC/MS) combined with chemometrics and bioinformatic analysis. The global metabolome data were analyzed using chemometrics analysis including principal component analysis and partial least squares discriminant analysis for significant metabolites. Variable importance for projection values obtained utilizing a pattern recognition method were used to identify potential biomarkers. The differential metabolites were putatively identified using the metabolome database and bioinformatics analysis was conducted via Ingenuity Pathway Analysis (IPA) to predict the likely functional alterations. In total, 21 differential metabolites were found in SMD and these were involved in phenylalanine, tyrosine and tryptophan biosynthesis, arachidonic acid metabolism, glycine, serine and threonine metabolism, and so on. The analysis revealed that the metabolites were strongly related to molecular transport, and small molecule biochemistry metabolic pathways. The present study indicates that high-throughput metabolic profiling, combined with chemometrics and a bioinformatic platform, can reveal the likely functional alterations in disease and could provide more precise and credible information in the basic research of disease pathogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...