Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e33212, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021933

RESUMEN

Lanbuzheng (LBZ) is the traditional seedling medicine in Guizhou, which has the effect of tonifying blood. It has been found that the main active ingredient is tannin, however, the blood-replenishing effect of tannin and its mechanism are still unclear. The study was to explore the mechanisms underlying the therapeutic effects of the total Tannins of Lanbuzheng (LBZT) against anemia in mice. Anemia mice was induced by cyclophosphamide, the effect of LBZT against anemia was determined by analyzing peripheral blood and evaluating organs indexes. Tandem mass tag (TMT)-based quantitative proteomics technology coupled with bioinformatics analysis was then used to identify differentially expressed proteins (DEPs) in spleen. Compared to the model, number of RBCs, PLTs and WBCs, HCT ratio and HGB content were increased, the indexes of thymus, spleen and liver were also increased, after LBZT intervention. A total of 377 DEPs were identified in LBZT group, of which 206 DEPs were significantly up-regulated and 171 DEPs were significantly down-regulated. Bioinformatics analysis showed that hematopoietic function has been restored by activating the complement and coagulation cascade signaling pathways. Results suggest that LBZT exerts it therapeutic effects against anemia by regulating complement and coagulation cascade signaling pathways and provides scientific basis for further mechanistic studies for LBZT.

2.
J Cell Mol Med ; 28(12): e18486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923380

RESUMEN

Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.


Asunto(s)
Antioxidantes , Folículo Piloso , Estrés Oxidativo , Transducción de Señal , Folículo Piloso/crecimiento & desarrollo , Folículo Piloso/metabolismo , Folículo Piloso/efectos de los fármacos , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Cabello/crecimiento & desarrollo , Cabello/metabolismo , Cabello/efectos de los fármacos , Alopecia/metabolismo , Alopecia/tratamiento farmacológico , Productos Biológicos/farmacología
3.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047098

RESUMEN

Acute ultraviolet (UV)-B radiation is the major external factor causing photodamage. In this study, we aimed to determine the effects of Dendrobium nobile Lindl. polysaccharides (DNPs) on photodamage in HaCaT keratinocytes after UVB irradiation and the underlying mechanisms. We found that DNPs significantly attenuated the decline in the viability and proliferation of HaCaT cells after UVB irradiation. Moreover, DNPs scavenged reactive oxygen species (ROS), improved the activities of endogenous antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, and reduced the levels of malondialdehyde, while partially attenuating cell cycle arrest, suggesting their antioxidant and anti-apoptotic properties. The mitogen-activated protein kinase (MAPK) pathway was found to be important for the attenuation of UVB-induced photodamage in the HaCaT cells. Furthermore, DNPs exerted cytoprotective effects by downregulating UVB-induced ROS-mediated phosphorylation of MAPKs, including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase, and by inhibiting p53 expression as well as the apoptotic cascade response. Therefore, DNPs ameliorated UVB-induced oxidative damage and apoptosis in HaCaT cells via the regulation of MAPKs. Our findings thus highlight the Dendrobium nobile Lindl polysaccharides as promising therapeutic candidates for UVB-induced photodamage.


Asunto(s)
Dendrobium , Células HaCaT , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células HaCaT/metabolismo , Dendrobium/metabolismo , Línea Celular , Estrés Oxidativo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis , Queratinocitos/metabolismo , Polisacáridos/farmacología , Polisacáridos/metabolismo , Rayos Ultravioleta/efectos adversos
4.
Front Pharmacol ; 13: 1073392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588691

RESUMEN

Hair serves important physiological functions, including temperature regulation and scalp protection. However, excessive shedding not only impacts these functions but can also significantly affect mental health and quality of life. Tianma Gouteng decoction (TGD) is a traditional Chinese medicine used for the treatment of various conditions, including hair loss. However, the associated mechanism underlying its anti-alopecia effect remains unknown. Therefore, this study aims to elucidate these mechanisms by employing systematic biology approaches, as well as in vitro and in vivo experimental validation. The chemical constituents of Tianma Gouteng decoction were identified using UHPLC-MS/MS, from which 39 potential bioactive components were screened, while an additional 131 putative Tianma Gouteng decoction beneficial components were extracted from the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) database. We then applied a dual-dimensional network pharmacology approach to analyze the data, followed by validation studies combining molecular docking techniques with in vivo and in vitro experiments. From the 39 bioactive components, including quercetin, luteolin, fisetin, wogonin, oroxylin A, boldine, tetrahydroalstonine, and galangin A, 782 corresponding targets were identified. In particular, GSK3ß and ß-catenin exhibited strong binding activity with the bioactive compounds. Hence, construction of a bioactive component-target network revealed that the mechanism underlying the anti-alopecia mechanism of Tianma Gouteng decoction primarily involved the Wnt/ß-catenin signaling pathway. Moreover, C57BL/6J mice exhibited measurable improvements in hair follicle regeneration following treatment with Tianma Gouteng decoction. Additionally, ß-catenin and p-GSK3ß levels were upregulated, while GSK3ß was downregulated in Tianma Gouteng decoction-treated animals and dermal papilla cells compared to control group. These in vivo and in vitro outcomes validated the targets and pathways predicted in the network pharmacology analysis of Tianma Gouteng decoction. This study provides a systematic analysis approach to identify the underlying anti-alopecia mechanisms of Tianma Gouteng decoction, further providing theoretical support for clinical assessment of Tianma Gouteng decoction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA