Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38822142

RESUMEN

Secondary flow path is one of the crucial aspects during the design of centrifugal blood pumps. Small clearance size increases stress level and blood damage, while large clearance size can improve blood washout and reduce stress level. Nonetheless, large clearance also leads to strong secondary flows, causing further blood damage. Maglev blood pumps rely on magnetic force to achieve rotor suspension and allow more design freedom of clearance size. This study aims to characterize turbulent flow field and secondary flow as well as its effects on the primary flow and pump performance, in two representative commercial maglev blood pumps of CH-VAD and HeartMate III, which feature distinct designs of secondary flow path. The narrow and long secondary flow path of CH-VAD resulted in low secondary flow rates and low disturbance to the primary flow. The flow loss and blood damage potential of the CH-VAD mainly occurred at the secondary flow path, as well as the blade clearances. By contrast, the wide clearances in HeartMate III induced significant disturbance to the primary flow, resulting in large incidence angle, strong secondary flows and high flow loss. At higher flow rates, the incidence angle was even larger, causing larger separation, leading to a significant decrease of efficiency and steeper performance curve compared with CH-VAD. This study shows that maglev bearings do not guarantee good blood compatibility, and more attention should be paid to the influence of secondary flows on pump performance when designing centrifugal blood pumps.

2.
Front Physiol ; 14: 1287207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098804

RESUMEN

Background: Hemolysis and its complications are major concerns during the clinical application of blood pumps. In-vitro circulatory testing loops have been employed as the key procedure to evaluate the hemolytic and thrombogenic performance of blood pumps during the development phase and before preclinical in-vivo animal studies. Except for the blood damage induced by the pump under test, blood damage induced by loop components such as the resistance valve may affect the accuracy, reproducibility, and intercomparability of test results. Methods: This study quantitatively investigated the impact of the resistance valve on in vitro evaluation of blood damage caused by blood pumps under different operating points. A series of idealized tubing models under the resistance valve with different openings were created. Three pumps - the FDA benchmark pump, the HeartMate 3 LVAD, and the CH-VAD - were involved in hypothetical tests. Eight operating points were chosen to cover a relatively wide spectrum of testing scenarios. Computational fluid dynamics (CFD) simulations of the tubing and pump models were conducted at the same operating points. Results and Conclusion: Overall, hemolysis and platelet activation induced by a typical resistance valve are equivalent to 17%-45% and 14%-60%, respectively, of those induced by the pump itself. Both ratios varied greatly with flow rate, valve opening and pump models. Differences in blood damage levels between different blood pumps or working conditions can be attenuated by up to 45%. Thus, hemolysis and platelet activation induced by the resistance valve significantly affect the accuracy of in-vitro hemocompatibility evaluations of blood pumps. A more accurate and credible method for hemocompatibility evaluations of blood pumps will benefit from these findings.

3.
Comput Methods Programs Biomed ; 242: 107785, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678097

RESUMEN

OBJECTIVE: The aim of this study is to perform patient-specific hemodynamic simulations of the patients with complicated aortic dissection underwent Physician-modified endograft (PMEG) and evaluate the treatment outcome. METHOD: 12 patient-specific models were reconstructed from computed tomography angiography (CTA) data of 6 patients with complicated aortic dissection before and after the PMEG. Hemodynamic simulations were conducted with the same time-varying volumetric flow rate extracted from the literature and 3-element Windkessel model (3 EWM) boundary conditions were applied at the aortic outlet. Hemodynamic indicators such as time-averaged wall shear stress (TAWSS), relative residence time (RRT) and endothelial cell activation potential (ECAP) were obtained to evaluate the postoperative effect of PMEG. RESULTS: Comparing with the preoperative models, the flow rates of most visceral arteries were increased in the postoperative models (PSMA = 0.012, PRRA = 0.013, and PLRA = 0.005). Pressure and TAWSS in visceral regions were significantly reduced (PP = 0.003 and PTAWSS = 0.017). With the false lumens (FL) covered by the stent grafts, the average TAWSS level increased in the regions of postoperative abdominal aorta (P = 0.002), and the average RRT and ECAP values decreased significantly (PRRT = 0.02 and PECAP = 0.003). CONCLUSION: This study shows that PMEG, as a new technique for the treatment of complicated aortic dissection involving the distal tears in the visceral region, can effectively restore the abnormal blood supply of the visceral arteries, reduce the risk of aortic rupture, the formation of aortic dissection aneurysm (ADA), and thrombosis. This corresponds well with clinical retrospective studies and 1-year follow-up outcomes. The findings of this study are of great significance for the development of PMEG.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Implantación de Prótesis Vascular , Humanos , Prótesis Vascular , Aneurisma de la Aorta Torácica/cirugía , Estudios Retrospectivos , Stents , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/cirugía , Aorta , Resultado del Tratamiento , Hemodinámica , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...