Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 71(26): 10155-10168, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37344385

RESUMEN

Contamination of foods and feeds with Ochratoxin A (OTA) is a global problem, and its detoxification is challenging. In this study, Bacillus velezensis IS-6 culture isolate supernatant degraded 1.5 g/mL OTA by 89% after 24 h of incubation at 37 °C, whereas viable cells and intra-cell extracts were less effective. The OTA degradation by B. velezensis IS-6 was an enzymatic process mediated by the culture supernatant. The degradation activity was optimal at 37 °C and pH 7.0, and Fe2+ and Cu2+ ions enhanced the OTA degradation. The LC-MS/MS analysis confirmed that structure of OTA was modified, resulting in the production of OTα that was less toxic than OTA. The transcriptomic analysis of B. velezensis IS-6 showed that 38 differentially expressed genes (DEGs) were significantly up-regulated, and 24 DEGs were down-regulated after treatment with OTA. A novel OTA degradation enzyme Nudix hydrolase Nh-9 was successfully cloned and characterized from the up-regulated genes. The recombinant Nh-9 enzyme was overexpressed in Escherichia coli BL21 and purified by affinity chromatography, exhibiting 68% degradation activity against 1.0 µg/mL OTA at 37 °C in 24 h. The degraded product by the Nh-9 enzyme was identified as the less toxic OTα by LC-MS/MS. According to the findings, it can be inferred that Nh-9 is the main OTA-degrading enzyme in B. velezensis IS-6. Furthermore, OTA may be co-degraded by Nh-9, carboxylesterase, signal peptidase, and other degrading agents that are yet to be discovered in this strain.


Asunto(s)
Ocratoxinas , Transcriptoma , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ocratoxinas/toxicidad , Hidrolasas Nudix
2.
Plant Dis ; 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35536212

RESUMEN

Ficus religiosa (L.) belongs to the family Moraceae, native to India and commonly known as 'Peepal'. It has high medicinal value due to its antibacterial, antiviral and antioxidant properties (Singh et al., 2015; Kalpana et al., 2009). In August 2021, leaf spots were observed on F. religiosa trees in Pabbi forest park Kharian (32°50'01.4"N 73°50'17.7"E), District Gujrat, Pakistan. The disease incidence was recorded approximately 30%. The leaf spots were irregular in shape, brown in colour, 3-9 mm in size and encircled by yellowish halo. In severe condition, the spots coalesced and produced necrotic areas on leaf surface (Figure 1). The samples (n=21) were collected based on symptoms and infected leaf segments were excised into small pieces, surface disinfected with 1% NaClO for 20s and rinsed 3 times with sterilized distilled water. The pieces were plated on Potato Dextrose Agar (PDA) medium and incubated at 28°C for 7 days. All the pure cultures were obtained through single spore method on PDA and preserved in 30% glycerol at -80°C. The colonies were olive green to dark brown with white margin and later turned dark olive or black with enormous sporulation. Conidia (n=24) were obclavate, ovoid, brown in colour and measuring 10.2 to 34.1 µm long x 5.9 to 12.3 µm wide with 1 to 6 transverse and 1 to 3 longitudinal septa (Figure 2). Based on these characteristics, the pathogen was identified as Alternaria alternata (Gilardi, G., et al. 2019). For molecular identification, the Internal Transcribed Spacers (ITS) region, endopolygalacturonase (endoPG) gene and major allergen (Alt a1) gene were amplified using ITS1/4 (White et al. 1990), PG3/PG2b (Andrew et al. 2009) and Alt-4for/Alt-4rev (Lawrence et al. 2013) primers respectively. Based on molecular characteristics, all isolates were identified as A. alternata. The sequences of the representative isolate FLB-1 were submitted in the GenBank with the accession numbers OL514181 for ITS, OK315658 for endoPG and OK315659 for Alt al showing 100% similarity with ITS accession KP124298, and endoPG accession AY205020 and 99.7% with Alt al accession KP123847 sequences of CBS106.24 A. alternata after BLASTn queries. The Phylogenetic reconstruction based on maximum likelihood, using Mega X (Kumar et al. 2018) and FLB-1 grouped with A. alternata (Figure 3). Pathogenicity test was performed on nine months old healthy F. religiosa (L.) seedlings (n=12) to fulfil the Koch's postulates. The leaves were pinpricked and sprayed with FLB-1 conidial suspension (107 spores/ml) by using atomizer (Bajwa et al., 2010). The leaves of F. religiosa (L.) seedlings (n=12) sprayed with sterilized distilled water served as control. All the seedlings were incubated at 25 ± 3°C in the glasshouse. The experiment was performed three times under the same conditions. The typical symptoms appeared on inoculated leaves after 7-14 days that were similar to the symptoms observed on original infected F. religiosa (L.) trees. In the control treatment leaves remained asymptomatic (Figure 4). The pathogen from the artificial infected leaves was re-isolated and identified as A. alternata based on morphological and molecular characteristics. To our knowledge, this is the first report of leaf spot of F. religiosa (L.) caused by A. alternata in Pakistan. The leaves of F. religiosa (L.) are commonly used in Asia for different purposes and this leaf spot disease may represent a significant threat to F. religiosa (L.) tree health.

3.
Toxins (Basel) ; 14(3)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35324671

RESUMEN

Aspergillus flavus is a saprophytic fungus that can be found across the entire world. It can produce aflatoxin B1 (AFB1), which threatens human health. CreA, as the central factor in carbon catabolite repression (CCR), regulates carbon catabolism and AFB1 biosynthesis in A. flavus. Additionally, SsnF-RcoA are recognized as the corepressors of CreA in CCR. In this study, ssnF and rcoA not only regulated the expressions of CCR factors and hydrolase genes, but also positively affected mycelia growth, conidia production, sclerotia formation, and osmotic stress response in A. flavus. More importantly, SsnF and RcoA were identified as positive regulators for AFB1 biosynthesis, as they modulate the AF cluster genes and the relevant regulators at a transcriptional level. Additionally, the interactions of SsnF-CreA and RcoA-CreA were strong and moderate, respectively. However, the interaction of SsnF and RcoA was weak. The interaction models of CreA-SsnF, CreA-RcoA, and SsnF-RcoA were also simulated with a docking analysis. All things considered, SsnF and RcoA are not just the critical regulators of the CCR pathway, but the global regulators involving in morphological development and AFB1 biosynthesis in A. flavus.


Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Proteínas Fúngicas , Aflatoxina B1/biosíntesis , Aspergillus flavus/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporas Fúngicas
4.
Front Nutr ; 8: 647750, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095188

RESUMEN

Celiac disease (CD) is a prevalent disorder with autoimmune features. Dietary exposure of wheat gluten (including gliadins and glutenins) to the small intestine activates the gluten-reactive CD4+ T cells and controls the disease development. While the human leukocyte antigen (HLA) is the single most important genetic factor of this polygenic disorder, HLA-DQ2 recognition of gluten is the major biological step among patients with CD. Gluten epitopes are often rich in Pro and share similar primary sequences. Here, we simulated the solution structures changes of a variety of gluten epitopes under different pH and temperatures, to mimic the fermentation and baking/cooking processes. Based on the crystal structure of HLA-DQ2, binding of differently processed gluten epitopes to DQ2 was studied in silico. This study revealed that heating and pH change during the fermentation process impact the solution structure of gluten epitope. However, binding of differently treated gluten epitope peptide (GEP) to HLA-DQ2 mainly depended on its primary amino acid sequence, especially acidic amino acid residues that play a pivotal role in their recognition by HLA-DQ2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...