Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Leuk Res ; 135: 107404, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844405

RESUMEN

Telomere maintenance is critical to ensure unlimited cancer cell proliferation, but the role of telomere-related genes in acute myeloid leukemia (AML) has not yet been thoroughly discussed. This study aims to develop a new prognostic risk model based on telomere-related genes and analyze potential mechanisms and targets. Cox regression analyses were used to build the prognostic risk model. Kaplan-Meier (KM) survival analysis and receiver operating characteristic (ROC) curve were used to assess the model performance. At the same time, we analyzed the relationship between the risk score and chemotherapy and immunotherapy and preliminarily explored possible mechanisms of immune resistance. The real-time polymerase chain reaction (PCR) was used to detect the prognosis gene expression levels. Finally, a prognostic signature of six telomere-related genes (TGPS6) including ALDH2, CDK18, DNMT3B, FRAT2, LGALSL, and RBL2 was constructed. The TGPS6 score was confirmed as an independent prognostic factor (HR 2.74, CI [2.13-3.53], p < 0.001) in AML and the five-year area under the ROC curve (AUC) value of the score in the training and validation set reached 0.74, 0.81 respectively. In addition, the TGPS6 perfected the European LeukemiaNet (ELN) 2017 prognosis risk stratification and performed well in both AML and cytogenetically normal AML (CN-AML) cohorts. The TGPS6 score also provided a reference for chemotherapy and immunotherapy in patients with AML.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Factores de Riesgo , Estimación de Kaplan-Meier , Curva ROC , Aldehído Deshidrogenasa Mitocondrial
2.
Front Mol Biosci ; 9: 831293, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712351

RESUMEN

Hemocoagulase Agkistrodon halys pallas is a complex mixture composed of snake venom thrombin-like enzymes (svTLEs) and small amounts of thrombokinase-like enzymes. It has been widely used as a hemostatic with rapidly growing marketing due to its advantage of localized clotting fibrinogen other than systemic coagulation. However, svTLEs from different species have various structures, functions, and hemostatic mechanisms. To ensure the efficacy and safety of Hemocoagulase Agkistrodon halys pallas, an exclusive and sensitive method has been developed to identify specific marker peptides based on liquid chromatography-tandem mass spectrometry with multiple reaction monitoring (LC-MS/MS-MRM) mode. By combining transcriptomics and proteomics, a series of species-specific peptides of Agkistrodon halys pallas were predicted and examined by LC-MS/MS. After reduction, alkylation, and tryptic digestion were performed on Hemocoagulase Agkistrodon halys pallas, a target peptide TLCAGVMEGGIDTCNR was analyzed by LC-MS/MS-MRM. It offers a new and effective approach for the quality control of Hemocoagulase Agkistrodon halys pallas products. This method is superior to the current assays in terms of sensitivity, specificity, precision, accuracy, and throughput. The strategy can also be applied in studying other important protein-based medicines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA