Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1354290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872886

RESUMEN

Moisture content testing of agricultural products is critical for quality control, processing efficiency and storage management. Testing foxtail millet moisture content ensures stable foxtail millet quality and helps farmers determine the best time to harvest. A differential capacitance moisture content detection device was designed based on STM32 and PCAP01 capacitance digital converter chip. The capacitance method combined with the back-propagation(BP) algorithm and the extreme learning machine(ELM) algorithm was chosen to construct an analytical model for foxtail millet moisture content, temperature, and volume duty cycle. This work performs capacitance measurements on foxtail millet with different moisture contents, temperatures, and proportions of the measured substance occupying the detection area (that is, the volumetric duty cycle). On this foundation, the sparrow search algorithm (SSA) is used to optimize the BP and ELM models. However, SSA may encounter problems such as falling into local optimization solutions due to the reduction of population diversity in the late iterations. As a consequence, Logistic algorithm is introduced to optimize SSA, making it more appropriate for solving specific problems. Upon comparative analysis, the model predicted using the Logistic-SSA-ELM algorithm was more accurate. The results indicate that the predicted values of prediction set coefficient of determination (RP), prediction set root mean square error (RMSEP) and prediction set ratio performance deviation (RPDP) were 0.7016, 3.7150 and 1.4035, respectively. This algorithm has excellent prediction performance and can be used as a model for detection of foxtail millet moisture content. In view of the important role of foxtail millet moisture content detection in acquisition and storage, it is particularly important to study a nondestructive and fast online real-time detection method. The designed capacitive sensor with differential structure has well stabilization and high accuracy, which can be further studied in depth and gradually move towards the general trend of agricultural development of smart agriculture and precision agriculture.

2.
Adv Sci (Weinh) ; : e2403334, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884140

RESUMEN

Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.

3.
Insects ; 15(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392529

RESUMEN

This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.

4.
Small ; : e2306541, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409478

RESUMEN

Bismuth (Bi) is regarded as a promising anode material for potassium ion batteries (PIBs) due to its high theoretical capacity, but the huge volume expansion during potassiation and intrinsic low conductivity cause poor cycle stability and rate capability. Herein, a unique Bi nanoparticles/reduced graphene oxide (rGO) composite is fabricated by anchoring the Bi nanoparticles over the rGO substrate through a ball-milling and thermal reduction process. As depicted by the in-depth XPS analysis, strong interfacial Bi-C bonding can be formed between Bi and rGO, which is beneficial for alleviating the huge volume expansion of Bi during potassiation, restraining the aggregation of Bi nanoparticles and promoting the interfacial charge transfer. Theoretical calculation reveals the positive effect of rGO to enhance the potassium adsorption capability and interfacial electron transfer as well as reduce the diffusion energy barrier in the Bi/rGO composite. Thereby, the Bi/rGO composite exhibits excellent potassium storage performances in terms of high capacity (384.8 mAh g-1 at 50 mA g-1 ), excellent cycling stability (197.7 mAh g-1 after 1000 cycles at 500 mA g-1 with no capacity decay) and superior rate capability (55.6 mAh g-1 at 2 A g-1 ), demonstrating its great potential as an anode material for PIBs.

5.
Plants (Basel) ; 12(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37631167

RESUMEN

Leaf photosynthetic pigments play a crucial role in evaluating nutritional elements and physiological states. In facility agriculture, it is vital to rapidly and accurately obtain the pigment content and distribution of leaves to ensure precise water and fertilizer management. In our research, we utilized chlorophyll a (Chla), chlorophyll b (Chlb), total chlorophylls (Chls) and total carotenoids (Cars) as indicators to study the variations in the leaf positions of Lycopersicon esculentum Mill. Under 10 nitrogen concentration applications, a total of 2610 leaves (435 samples) were collected using visible-near infrared hyperspectral imaging (VNIR-HSI). In this study, a "coarse-fine" screening strategy was proposed using competitive adaptive reweighted sampling (CARS) and the iteratively retained informative variable (IRIV) algorithm to extract the characteristic wavelengths. Finally, simultaneous and quantitative models were established using partial least squares regression (PLSR). The CARS-IRIV-PLSR was used to create models to achieve a better prediction effect. The coefficient determination (R2), root mean square error (RMSE) and ratio performance deviation (RPD) were predicted to be 0.8240, 1.43 and 2.38 for Chla; 0.8391, 0.53 and 2.49 for Chlb; 0.7899, 2.24 and 2.18 for Chls; and 0.7577, 0.27 and 2.03 for Cars, respectively. The combination of these models with the pseudo-color image allowed for a visual inversion of the content and distribution of the pigment. These findings have important implications for guiding pigment distribution, nutrient diagnosis and fertilization decisions in plant growth management.

6.
Membranes (Basel) ; 13(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37505003

RESUMEN

Mine water cannot be directly consumed by trapped people when a mine collapses, so it is difficult for people to carry out emergency rescues to ensure their safety. Therefore, a water bag made of a forward osmosis (FO) membrane has been designed that can efficiently filter coal mine water to meet the urgent needs of emergency rescue. Before interfacial polymerization (IP), sodium-dodecyl-sulfate-modified halloysite (SDS-HNT) was added to an MPD aqueous solution to prepare an SDS-HNT polyamide active layer, and then the prepared membrane was placed into a polydopamine (PDA) solution formed by the self-polymerization of dopamine and a PDA/SDS-HNT composite film was prepared. The results showed that the original ridge-valley structure of the polyamide membrane was transformed to a rod-, circular-, and blade-like structure by the addition of SDS-HNTs. Subsequently, a dense PDA nanoparticle layer was formed on the modified membrane. The polyamide/polysulfone forward osmosis membrane modified by co-doping of PDA and SDS-HNTs displayed both the best water flux and rejection rate, confirming the synergistic effect of compound modification. Therefore, the high-performance permeability of the polyamide membrane modified by SDS-HNTs and PDA provides great convenience for the emergency filtration of coal mine water, and also has potential applications in wastewater treatment and seawater desalination.

7.
Chemosphere ; 329: 138555, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019394

RESUMEN

Phenanthrene (Phe), a typical polycyclic aromatic hydrocarbon (PAH) pollutant, poses an enormous safety risk to rice-crab coculture (RC) paddy ecosystems. In this study, humic acid-modified purified attapulgite (HA-ATP) with a composite structure was successfully fabricated to adsorb PAHs released from paddy soil to overlying water in RC paddy ecosystems in Northeast China. The maximum crab bioturbation intensities for dissolved Phe and particulate Phe were 64.83nullng/L·(cm2·d) and 214.29nullng/L·(cm2·d), respectively. The highest concentration of dissolved Phe released from paddy soil to overlying water due to crab bioturbation reached 80.89nullng/L, while the corresponding concentration of particulate Phe reached 267.36nullng/L. The dissolved organic carbon (DOC) and total suspended solid (TSS) concentrations in overlying water increased correspondingly and were strongly correlated with dissolved Phe and particulate Phe concentrations, respectively (P < 0.05). When 6% HA-ATP was added to the surface layer of paddy soil, the efficiency of the adsorption of Phe release was 24.00%-36.38% for particulate Phe and 89.99%-91.91% for dissolved Phe. Because HA-ATP has a large adsorption pore size (11.33 nm) and surface area (82.41nullm2/g) as well as many HA functional groups, it provided multiple hydrophobic adsorption sites for dissolved Phe, which was conducive to competitive adsorption with DOC in the overlying water. In contrast to that adsorbed by DOC, the average proportion of dissolved Phe adsorbed by HA-ATP reached 90.55%, which reduced the dissolved Phe concentration in the overlying water. Furthermore, even though the particulate Phe was resuspended by crab bioturbation, HA-ATP immobilized particulate Phe due to its capacity to inhibit desorption, which achieved the goal of reducing the Phe concentration in the overlying water. This result was confirmed by research on the adsorption-desorption characteristics of HA-ATP. This research provides an environmentally friendly in situ remediation method for reducing agricultural environmental risks and improving rice crop quality.


Asunto(s)
Braquiuros , Oryza , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Animales , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Sustancias Húmicas , Ecosistema , Oryza/química , Agua/química , Adsorción , Técnicas de Cocultivo , Adenosina Trifosfato , Contaminantes del Suelo/análisis
8.
ACS Appl Mater Interfaces ; 14(39): 44338-44344, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36149014

RESUMEN

In lithium metal batteries (LMB), unrestricted growth of lithium dendrites will pierce the separator and cause an internal short circuit. Therefore, we designed modified separator with an InN thin layer, which could be in situ converted into a binary mixed-modified layer of Li-In alloy and Li3N during the lithium plating/stripping process. Among them, Li-In alloy induces the lateral growth of lithium dendrites and prevents the separator from being pierced; Li3N balances ion distribution at the lithium anode/separator interface, which is beneficial to inhibit the growth of lithium dendrites. Under the synergistic effect of the two phases, the performance of LMBs was obviously improved. In addition, the separator modification does not need to be carried out in a protective atmosphere and is suitable for large-scale roll-to-roll processing.

9.
ACS Nano ; 16(9): 14539-14548, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36067370

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are attractive energy storage devices that benefit from improved safety and negligible environmental impact. The V2O5-based cathodes are highly promising, but the dissolution of vanadium is one of the major challenges in realizing their stable performance in AZIBs. Herein, we design a Ti3C2Tx MXene layer on the surface of V2O5 nanoplates (VPMX) through a van der Waals self-assembly approach for suppressing vanadium dissolution during an electrochemical process for greatly boosting the zinc-ion storage performance. Unlike conventional V2O5/C composites, we demonstrate that the VPMX hybrids offer three distinguishable features for achieving high-performance AZIBs: (i) the MXene layer on cathode surface maintains structural integrity and suppresses V dissolution; (ii) the heterointerface between V2O5 and MXene enables improved host electrochemical kinetics; (iii) reduced electrostatic repulsion exists among host layers owing to the lubricating water molecules in the VPMX cathode, facilitating interfacial Zn2+ diffusion. As a result, the as-made VPMX cathode shows a long-term cycling stability over 5000 cycles, surpassing other reported V2O5-based materials. Especially, we find that the heterointerface between V2O5 and MXene and lubricated water molecules in the host can achieve an enhanced rate capability (243.6 mAh g-1 at 5.0 A g-1) for AZIBs.

10.
ACS Omega ; 7(21): 17575-17582, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35664629

RESUMEN

As a kind of flexible intelligent driving material, ionic polymer-metal composite (IPMC) has attracted the attention of researchers due to its advantages of lightweight, large deformation, and fast response. However, the reciprocating bending of IPMC causes cracks to appear on the surface metal electrode layer and reduces the water uptake (WUP). At the same time, the metal particles are extruded, resulting in an increase in resistivity, which affects the driving performance of the materials. Therefore, in this study, considering the preparation cost, Cu-Pt-IPMC using Pt and Cu as a composite electrode with the self-healing system was prepared by electroless plating and Cu2+ was used as driving ions that can form a reversible circulation system with a copper electrode. The WUP, surface resistivity, and driving performance were tested and analyzed and the surface roughness was characterized by Matlab. The results show that the dendritic interface electrodes (DIEs) appear at the contact interface between the metal electrode and the film, which extend deeper and wider in the film with the increase in the cycles of autocatalytic platinum plating (ACP-Pt), and the output displacement and blocking force of 61.20 mm and 34.26 mN, respectively, have been achieved in the Cu-Pt-IPMC sample after three cycles of ACP-Pt. Based on these analyses, this study proves that the presence of Cu2+ can repair the cracked electrode on the surface of IPMC and reduce the surface electrode resistance, improving the driving performance.

11.
Materials (Basel) ; 15(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35744422

RESUMEN

In this work, La-doped Sr0.6Ba0.4Nb2O6 ferroelectric ceramics were fabricated by the conventional solid state reaction method (CS) and spark plasma sintering (SPS), respectively. The microstructure, phase structure, dielectric properties, relaxor behavior, ferroelectric and energy storage properties were investigated and compared to indicate the effects of spark plasma sintering on their performances. The results show that the grain shape changes from columnar to isometric crystal and the grain size decreases obviously after spark plasma sintering. The dielectric constant of the CS sample and the SPS sample both show a typical relaxor behavior with obvious frequency dispersion. The diffusion parameters (γ) of both CS sample and SPS sample are close to 2 and all the samples present slim polarization-electric (P-E) loops, which verify the relaxor behavior. Moreover, the breakdown strength, Eb, and discharge energy storage density, Wrec, of La-doped Sr0.6Ba0.4Nb2O6 ferroelectric ceramics prepared by SPS are improved significantly. This work provides guidance for improving the energy storage performance of ferroelectric ceramics with tungsten bronze structures by decreasing the grain size through adopting a different sintering method.

12.
Dalton Trans ; 51(18): 7234-7240, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471498

RESUMEN

The synergistic effect of a highly active surface/interface and an optimized electronic structure of electrocatalysts is of great significance to improve the performance of the hydrogen evolution reaction. Herein, a superhydrophilic core@shell heterostructure nanorod-integrated electrode composed of an amorphous VOx nanoshell (3-7 nm) and a crystalline Ni3S2 core supported on Ni foam (CS-NS/NF) was prepared by an in situ conversion method. We prove that the amorphous VOx not only helps to kinetically decouple the adsorption/dissociation of hydroxyl/water, but also enriches the active sites, thereby significantly enhancing the electron transfer efficiency and electrocatalytic activity toward the hydrogen evolution reaction (HER). The optimized CS-NS/NF has excellent hydrogen production performance, with overpotentials of 335 and 394 mV at current densities of 500 and 1000 mA cm-2, respectively, as well as superior durability for over 68 h in 1 M KOH.

13.
Materials (Basel) ; 15(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35161075

RESUMEN

The resource and large-scale utilization of waste ceramic materials, magnesium slag, and coal gangue are one of the important ways for the sustainable development in metallurgy, coal, and other related enterprises. In this paper, waste ceramic materials were used as aggregates; coal gangue and magnesium slag were used as mixed binder; and the all solid-waste-based permeable bricks with excellent performance were prepared by forming pressure at 5 MPa. The mechanical properties and water permeability of the all-solid-waste-based permeable bricks were evaluated. The results proved that the porous channel of permeable brick is mainly composed of waste ceramic materials with a particle size of 2-3 mm. Pore structures below 200 µm were mainly composed of fine aggregate and mixed binder. Using 60% coarse aggregate, 20% fine aggregate, 10% coal gangue, and 10% magnesium slag as raw materials, the all-solid-waste-based permeable bricks were obtained by pressing at 6 MPa and sintering at 1200 °C, which exhibited the best performance, and its water permeability, compressive strength, and apparent porosity were 1.56 × 10-2 cm/s, 35.45 MPa, and 13.15%, respectively. Excellent water permeability, compressive strength, and apparent porosity of the all solid-waste-based permeable bricks were ascribed to the high content of connecting open pores, and closely adhesive force were ascribed to the porous microstructure constructed by the grading of waste ceramic materials and the tight conjoined points of the liquid phases in coal gangue and magnesium slag at a high sintering temperature.

14.
Nanomicro Lett ; 13(1): 202, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34568995

RESUMEN

ZnS has great potentials as an anode for lithium storage because of its high theoretical capacity and resource abundance; however, the large volume expansion accompanied with structural collapse and low conductivity of ZnS cause severe capacity fading and inferior rate capability during lithium storage. Herein, 0D-2D ZnS nanodots/Ti3C2Tx MXene hybrids are prepared by anchoring ZnS nanodots on Ti3C2Tx MXene nanosheets through coordination modulation between MXene and MOF precursor (ZIF-8) followed with sulfidation. The MXene substrate coupled with the ZnS nanodots can synergistically accommodate volume variation of ZnS over charge-discharge to realize stable cyclability. As revealed by XPS characterizations and DFT calculations, the strong interfacial interaction between ZnS nanodots and MXene nanosheets can boost fast electron/lithium-ion transfer to achieve excellent electrochemical activity and kinetics for lithium storage. Thereby, the as-prepared ZnS nanodots/MXene hybrid exhibits a high capacity of 726.8 mAh g-1 at 30 mA g-1, superior cyclic stability (462.8 mAh g-1 after 1000 cycles at 0.5 A g-1), and excellent rate performance. The present results provide new insights into the understanding of the lithium storage mechanism of ZnS and the revealing of the effects of interfacial interaction on lithium storage performance enhancement.

15.
Proteomics ; 21(20): e2100007, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482643

RESUMEN

Methionine (Met) and cystine (CySS) are key sulfur donors in cell metabolism and are important nutrients for sustaining tumor growth; however, the molecular effects associated with their deprivation remain to be characterized. Here, we applied a xenograft mouse model to assess the impact of their deprivation on A549 xenografts and the xenograft-bearing animal. Results show that Met and CySS deprivation inhibits A549 growth in vitro, not in vivo. Deprivation was detrimental to the xenograft-bearing mouse, as demonstrated by weight loss and renal dysfunction. Differentially expressed proteins in A549 xenograft and mouse kidneys were characterized using quantitative proteomics. Functional annotation and protein-protein interaction network analysis revealed the enriched signaling pathways, including focal adhesion (Fn1) in the A549 xenograft, and xenobiotic metabolism (Cyp2e1) and glutathione metabolism (Ggt1) in the mouse kidney. Met and CySS deprivation inhibits the migratory and invasive properties of cancer cells, as evidenced by reduced expression of the epithelial to mesenchymal transition marker N-cadherin in A549 cells in vitro. Moreover, IGFBP1 protein expression was inhibited in both A549 xenograft and mouse kidneys. This study provides the first insights into changes within the proteome profile and biological processes upon Met and CySS deprivation in a A549 xenograft mouse model.


Asunto(s)
Cistina , Neoplasias Pulmonares , Animales , Transición Epitelial-Mesenquimal , Xenoinjertos , Metionina , Ratones , Proteómica
16.
RSC Adv ; 11(49): 30763-30770, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35498917

RESUMEN

High-voltage lithium cobalt oxide (LCO) cathode material always suffers from rapid capacity decay due to irreversible phase transition and unexpected parasitic reactions between the charged LCO and conventional carbonate electrolyte. Here, a series of fluorinated electrolytes containing single or multiple fluorinated solvents were sought to match the high-voltage LCO cathode. The effects of regulating solvent components on the electrolyte properties, interfacial chemistry on both LCO cathode and mesocarbon microbead (MCMB) anode, and electrochemical performance of the LCO/MCMB cell were investigated. It is found that the synergistic effect of the fluorinated solvents obviously improves the reversible capacity and cycle capability for various half/full cell construction, in virtue of enhanced oxidation resistivity of the electrolyte and moderately-modified surface film on the cathode/anode. A novel perfluorinated electrolyte entirely consisting of fluorinated carbonate and fluorinated ether offers superior overall performance for the LCO/MCMB full cell at the upper cut-off voltage of 4.45 V.

17.
Scanning ; 2020: 4843175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32904473

RESUMEN

The Ni-65wt%WC cladding layers were prepared on the surface of Q235 using laser cladding technology, in which the effect of heat treatment on microstructure and tribocorrosion performance was investigated. The results showed that the coating is mainly consisted of Ni, WC, and W2C, and a significant diffusion phenomenon is formed between the interfaces of WC/Ni matrix, benefited for the improvement of bonding layer between WC/Ni-based matrixes. Meanwhile, the crystallization of WC particles after heat treatment was more obvious than untreatment; the Ni matrix grain size was also grown remarkable, leading to the lower hardness and weaker plastic deformation resistance of Ni-65wt%WC coating. And the erosion results showed that the wear rate of coating gradually decreased with heat treatment temperature increasing, while brittle WC was not suitable for high impact wear conditions. Furthermore, with the increase of heat treatment temperature, the reciprocating wear performance showed that the friction coefficient and wear rate of Ni-65wt%WC coating decreased. And the friction coefficient and wear rate of the coating (700°C) in 3.5% NaCl solution were 0.15 and 4.82 × 10-8 mm3·N-1·m-1, respectively. Therefore, the comprehensive comparison showed that Ni-65WC coating had better performance in low impact reciprocating testing under corrosion environment, and heat treatment was helpful to further improve the tribocorrosion performance of laser cladding Ni-65wt%WC coating.

18.
Polymers (Basel) ; 11(10)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618896

RESUMEN

π-Conjugated organic donor-acceptor (D-A) type polymers are widely developed and used in electronic device. Among which, diketopyrrolopyrrole (DPP)-based polymers have received the most attention due to their high performances. The novel chromophores named 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (isoDPP), benzodipyrrolidone (BDP) and naphthodipyrrolidone (NDP) are resemble DPP in chemical structure. IsoDPP is an isomer of DPP, with the switching position of carbonyl and amide units. The cores of BDP and NDP are tri- and tetracyclic, whereas isoDPP is bicyclic. π-Conjugation extension could result polymers with distinct optical, electrochemical and device performance. It is expected that the polymers containing these high-performance electron-deficient pigments are potential in the electronic device applications, and have the potential to be better than the DPP-based ones. IsoDPP, BDP, and NDP based polymers are synthesized since 2011, and have not receive desirable attention. In this work, the synthesis, properties (optical and electrochemical characteristics), electronic device as well as their relationship depending on core-extension or structure subtle optimization have been reviewed. The final goal is to outline a theoretical scaffold for the design the D-A type conjugated polymers, which is potential for high-performance electronic devices.

19.
Langmuir ; 33(29): 7305-7311, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28669193

RESUMEN

Foams are ultrastable when all the aging processes arrest. We make such foams by precipitating sodium dodecyl sulfate with potassium chloride during the foaming process. The precipitate crystals adsorb onto the bubble surfaces to arrest coarsening and stop drainage by blocking in the interstices around the bubbles. However, if the concentration of SDS is too high, the foams are no longer ultrastable. The transition is sudden and corresponds to the point at which significant dodecyl sulfate remains in solution. The presence of the noncrystallized surfactant allows the foam to coarsen leading to the eventual disappearance of the foams, even if the crystals in the continuous phase can still block drainage. The transition occurs as the concentration of nonsolubilized KCl becomes higher than the concentration of SDS, giving us a linear stability boundary. The system offers an interesting alternative to other types of particles because the surfactant crystals break and reform as the temperature is cycled, which makes for reusable solutions and stimulable foams.

20.
J Am Heart Assoc ; 6(3)2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28275065

RESUMEN

BACKGROUND: A number of studies have evaluated the efficacy of deferred stenting vs immediate stenting in patients with ST-segment elevation myocardial infarction, but the findings were not consistent across these studies. This meta-analysis aims to assess optimal treatment strategies in patient with ST-segment elevation myocardial infarction. METHODS AND RESULTS: We searched the PubMed, EMBASE, and the Cochrane Library for studies that assessed deferred vs immediate stenting in patients with ST-segment elevation myocardial infarction. Nine studies including 1456 patients in randomized controlled trials and 719 patients in observational studies were included in the meta-analysis. No significant differences were observed in the incidence of no- or slow-reflow between deferred stenting and immediate stenting in randomized controlled trials (odds ratio [OR] 0.51, 95%CI 0.17-1.53, P=0.23, I2=70%) but not in observational studies (OR 0.13, 95%CI 0.06-0.31, P<0.0001, I2=0%). Deferred stenting was associated with an increase in long-term left ventricular ejection fraction (weighted mean difference 1.90%, 95%CI 0.77-3.03, P=0.001, I2=0%). No significant differences were observed in the rates of major adverse cardiovascular events (OR 0.53, 95%CI 0.27-1.01, P=0.06 [randomized OR 0.98, 95%CI 0.73-1.30, P=0.87, I2=0%; nonrandomized OR 0.30, 95%CI 0.15-0.58, P=0.0004, I2=0%]), major bleeding (OR=0.1.61, 95%CI 0.70-3.69, P=0.26, I2=0%), death (OR=0.78, 95%CI 0.53-1.15, P=0.22, I2=0%), MI (OR=0.97, 95%CI 0.34-2.78, P=0.96, I2=35%) and target vessel revascularization (OR 0.97, 95%CI 0.40-2.37, P=0.95, I2=24%), between deferred and immediate stenting. CONCLUSIONS: Compared with immediate stenting, a deferred-stenting strategy did not reduce the occurrence of no- or slow-reflow, death, myocardial infarction, or repeat revascularization compared with immediate stenting in patients with ST-segment elevation myocardial infarction, but showed an improved left ventricular function in the long term.


Asunto(s)
Angioplastia/métodos , Intervención Coronaria Percutánea/métodos , Infarto del Miocardio con Elevación del ST/terapia , Stents , Tiempo de Tratamiento , Hemorragia/epidemiología , Humanos , Oportunidad Relativa , Infarto del Miocardio con Elevación del ST/fisiopatología , Volumen Sistólico , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...