Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Carbohydr Polym ; 335: 122073, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616095

RESUMEN

Breast cancer remains one of the most intractable diseases, especially the malignant form of metastasis, with which the cancer cells are hard to track and eliminate. Herein, the common known carbohydrate polymer chitosan (CS) was innovatively used as a shelter for the potent tumor-killing agent. The designed nanoparticles (NPs) not only enhance the solubility of hydrophobic paclitaxel (PTX), but also provide a "hide" effect for cytotoxic PTX in physiological condition. Moreover, coupled with the photothermal (PTT) properties of MoS2, results in a potent chemo/PTT platform. The MoS2@PTX-CS-K237 NPs have a uniform size (135 ± 17 nm), potent photothermal properties (η = 31.5 %), and environment-responsive (low pH, hypoxia) and near infrared (NIR) laser irradiation-triggered PTX release. Through a series of in vitro and in vivo experiments, the MoS2@PTX-CS-K237 showed high affinity and specificity for breast cancer cells, impressive tumor killing capacity, as well as the effective inhibitory effect of metastasis. Benefit from the unique optical properties of MoS2, this multifunctional nanomedicine also exhibited favorable thermal/PA/CT multimodality imaging effect on tumor-bearing mice. The system developed in this work represents the advanced design concept of hierarchical stimulus responsive drug release, and merits further investigation as a potential nanotheranostic platform for clinical translation.


Asunto(s)
Quitosano , Neoplasias , Animales , Ratones , Molibdeno , Nanomedicina , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Imagen Multimodal
2.
World Neurosurg ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38583558

RESUMEN

OBJECTIVE: Comparing laminectomy with fusion (LF) and laminoplasty (LP) for treating multilevel cervical spondylotic myelopathy (MCSM) and comparative analysis of neck pain and sagittal cervical parameters. METHODS: This single-center study retrospectively analyzed MCSM patients treated with LF or LP in our department between June 2018 and January 2023, with at least a 12-month follow-up. T-tests were used to identify operation time, hemoglobin, hospital stay, modified Japanese Orthopaedic Association (mJOA) score, C2-C7 Cobb angle, C2-C7 sagittal vertical axis, T1 slope, cervical range of motion (cROM), and C4/5 anterior and posterior spinal canal diameter (A-P diameter) and area. Nonparametric tests were used to identify visual analog scale (VAS) score (assessing neck pain). Pearson correlation analyses were used to identify the neck pain. RESULTS: Of all 67 patients (LF: 24, LP: 43), both groups' mJOA scores significantly improved (P < 0.001). The VAS scores had both significantly decreased, with the LF group exhibiting a more marked reduction (LF: P < 0.001, LP: P = 0.037). Both groups' C4/5 A-P diameters and areas increased significantly (P < 0.001). The cROM had both significantly decreased, with the LF group exhibiting a greater reduction. At the last follow-up, the LF group's T1 slope and C2-C7 Cobb angle considerably increased, and pain VAS scores substantially correlated with the C2-C7 Cobb angle (R = -0.451, P < 0.001). CONCLUSIONS: LF and LP were efficacious for MCSM. LF relieved neck pain better but caused greater reduction in cervical mobility. Cervical lordosis improvement was significantly correlated with neck pain alleviation.

3.
Physiol Behav ; 279: 114523, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492912

RESUMEN

Melatonin is a neurohormone synthesized by the pineal gland to regulate the circadian rhythms and has proven to be effective in treating drug addiction and dependence. However, the effects of melatonin to modulate the drug-seeking behavior of fentanyl and its underlying molecular mechanism is elusive. This study was designed to investigate the effects of melatonin on fentanyl - induced behavioral sensitization and circadian rhythm disorders in mice. The accompanying changes in the expression of Brain and Muscle Arnt-Like (BMAL1), tyrosine hydroxylase (TH), and monoamine oxidase A (MAO-A) in relevant brain regions including the suprachiasmatic nucleus (SCN), nucleus accumbens (NAc), prefrontal cortex (PFC), and hippocampus (Hip) were investigated by western blot assays to dissect the mechanism by which melatonin modulates fentanyl - induced behavioral sensitization and circadian rhythm disorders. The present study suggest that fentanyl (0.05, 0.1 and 0.2 mg/kg) could induce behavioral sensitization and melatonin (30.0 mg/kg) could attenuate the behavioral sensitization and circadian rhythm disorders in mice. Fentanyl treatment reduced the expression of BMAL1 and MAO-A and increased that of TH in relevant brain regions. Furthermore, melatonin treatment could reverse the expression levels of BMAL1, MAO-A, and TH. In conclusion, our study demonstrate for the first time that melatonin has therapeutic potential for fentanyl addiction.


Asunto(s)
Trastornos Cronobiológicos , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Factores de Transcripción ARNTL , Fentanilo/farmacología , Fentanilo/uso terapéutico , Fentanilo/metabolismo , Núcleo Supraquiasmático/metabolismo , Ritmo Circadiano/fisiología , Trastornos Cronobiológicos/metabolismo , Monoaminooxidasa/metabolismo , Monoaminooxidasa/farmacología
4.
ACS Omega ; 9(1): 781-797, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222662

RESUMEN

Glial scarring formed by reactive astrocytes after spinal cord injury (SCI) is the primary obstacle to neuronal regeneration within the central nervous system, making them a promising target for SCI treatment. Our previous studies have demonstrated the positive impact of miR-124-3p on neuronal repair, but it remains unclear how miR-124-3p is involved in autophagy or ER stress in astrocyte activation. To answer this question, the expression of A1 astrocyte-related markers at the transcriptional and protein levels after SCI was checked in RNA-sequencing data and verified using quantitative polymerase chain reaction (qPCR) and Western blotting in vitro and in vivo. The potential interactions among circHIPK2, miR-124-3p, and Smad2 were analyzed and confirmed by bioinformatics analyses and a luciferase reporter assay. In the end, the role of miR-124-3p in autophagy, ER stress, and SCI was investigated by using Western blotting to measure key biomarkers (C3, LC3, and Chop) in the absence or presence of corresponding selective inhibitors (siRNA, 4-PBA, TG). As a result, SCI caused the increase of A1 astrocyte markers, in which the upregulated circHIPK2 directly targeted miR-124-3p, and the direct downregulating effect of Smad2 by miR-124-3p was abolished, while Agomir-124 treatment reversed this effect. Injury caused a significant change of markers for ER stress and autophagy through the circHIPK2/miR-124-3p/Smad2 pathway, which might activate the A1 phenotype, and ER stress might promote autophagy in astrocytes. In conclusion, circHIPK2 may play a functional role in sequestering miR-124-3p and facilitating the activation of A1 astrocytes through regulating Smad2-mediated downstream autophagy and ER stress pathways, providing a new perspective on potential targets for functional recovery after SCI.

5.
J Orthop Surg Res ; 19(1): 29, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172985

RESUMEN

PURPOSE: To evaluate clinical effectiveness and radiologic results of anterior cervical diskectomy with fusion (ACDF) comparing with laminoplasty (LP) in treating multilevel cervical spondylotic myelopathy (MCSM) with developmental canal stenosis (DCS). METHODS: This was a retrospective analysis of 41 patients who had MCSM with DCS treated with ACDF or LP from December 2018 to April 2023. Patients were split into ACDF and LP groups for comparison, and patients were further separated into subgroups based on whether or not a reserving canal space was present. The operation time, hemoglobin, hospital stay, modified Japanese Orthopaedic Association (mJOA) score, and visual analog scale (VAS) score were used to assess clinical efficacy. The C2-C7 Cobb angle, C2-C7 sagittal vertical axis, T1 slope, and cervical range of motion were applied to evaluate imaging changes. RESULTS: Of the 41 patients, 19 received ACDF, and 22 received LP. At the final follow-up, both groups' mJOA scores significantly improved, and the intercomparison showed no differences; the VAS score was much lower in the ACDF group but remained unchanged in the LP group. At the final follow-up, the C2-C7 Cobb angle and T1 slope had significantly increased in the ACDF group, while the LP group showed no change; the cervical range of motion had significantly decreased in both groups, with the ACDF group exhibiting a more marked reduction. Within the ACDF subgroup, there was no postoperative symptom improvement for those with reserving space, whereas there was postoperative symptom resolution for those with non-reserving space; however, postoperative symptom in the LP subgroup was resolved. CONCLUSIONS: Both ACDF and LP were efficacious for MCSM patients with DCS. While ACDF could improve cervical lordosis and alleviate neck pain more effectively, it can also result in cervical sagittal imbalance and decreased mobility. Furthermore, the recovery from LP was superior to that from ACDF for patients with reserving space. In contrast, the recovery from both decompression techniques was comparable for individuals in non-reserving space.


Asunto(s)
Laminoplastia , Enfermedades de la Médula Espinal , Fusión Vertebral , Espondilosis , Humanos , Estudios Retrospectivos , Laminoplastia/métodos , Constricción Patológica , Discectomía/métodos , Fusión Vertebral/métodos , Enfermedades de la Médula Espinal/cirugía , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Resultado del Tratamiento , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía
6.
Braz J Cardiovasc Surg ; 38(6): e20220260, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801489

RESUMEN

INTRODUCTION: Thoracic aortic aneurysm is a potentially fatal disease with a strong genetic contribution. The dysfunction of vascular smooth muscle cells (VSMCs) contributes to the formation of this aneurysm. Although previous studies suggested that long non-coding ribonucleic acid (RNA) hypoxia inducible factor 1 α-antisense RNA 1 (HIF1A-AS1) exerted a vital role in the progression and pathogenesis of thoracic aortic aneurysm, we managed to find a new regulatory mechanism of HIF1A-AS1 in VSMCs via transcriptomics. METHODS: Cell viability was detected by the cell counting kit-8 assay. Cell apoptosis was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Transwell migration assay and wound healing assay were performed to check the migration ability of HIF1A-AS1 on VSMCs. The NextSeq XTen system (Illumina) was used to collect RNA sequencing data. Lastly, reverse transcription-quantitative polymerase chain reaction confirmed the veracity and reliability of RNA-sequencing results. RESULTS: We observed that overexpressing HIF1A-AS1 successfully promoted apoptosis, significantly altered cell cycle distribution, and greatly attenuated migration in VSMCs, further highlighting the robust promoting effects of HIF1A-AS1 to thoracic aortic aneurysm. Moreover, transcriptomics was implemented to uncover its underlying mechanism. A total of 175 differently expressed genes were identified, with some of them enriched in apoptosis, migration, and cell cycle-related pathways. Intriguingly, some differently expressed genes were noted in vascular development or coagulation function pathways. CONCLUSION: We suggest that HIF1A-AS1 mediated the progression of thoracic aortic aneurysm by not only regulating the function of VSMCs, but also altering vascular development or coagulation function.


Asunto(s)
Aneurisma de la Aorta Torácica , ARN Largo no Codificante , Humanos , Aneurisma de la Aorta Torácica/genética , MicroARNs/genética , Músculo Liso Vascular , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Reproducibilidad de los Resultados , Transcriptoma , ARN Largo no Codificante/metabolismo
7.
Heliyon ; 9(7): e17852, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37455998

RESUMEN

Spinal cord injury (SCI) has a high disability rate and mortality rate. Recently, LncRNA XIST has been found to be involved in the regulation of inflammatory responses. Therefore, we aimed to investigate the role of XIST in the occurrence and development of SCI and the specific regulation mechanism. Methods: 100 ng/mL lipopolysaccharide (LPS) was used to treat mouse microglia BV2 cells. Hitting spinal cord was performed to C57BL/6 mice for establishing SCI model. Real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), Western blot, Immunofluorescence (IF) and Enzyme linked immunosorbent assay (ELISA) experiments were used to explore the function of XIST, miR-124-3p and IRF1 in LPS-induced BV2 cells. RT-qPCR, Nissl staining, IF, Western blot and ELISA experiment were performed to study the function of XIST in SCI mice. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP), RT-qPCR and Western blot assays were utilized to identify the interaction among XIST, miR-124-3p and IRF1. Results: XIST was upregulated in LPS-induced BV2 cells and spinal cord tissues of SCI mice. Overexpression of XIST promoted the M1 microphages polarization and cytokines concentration in LPS-stimulated BV2 cells, aggravated SCI of mice. Downregulated XIST promoted M1-to-M2 conversion of microglial and relieved the injury of SCI mice. Mechanism verification indicated that XIST acted as a molecular sponge of miR-124-3p and regulated IRF1 expression. Increased miR-124-3p or reduced IRF1 inhibited M1 polarization of microglial and decreased the production of inflammatory cytokines in LPS-induced BV2 cells. Increased XIST or decreased miR-124-3p had an opposite of on LPS-induced BV2 cells. Conclusion: Overexpression of XIST enhanced M1 polarization of microglia and promoted the level of inflammatory cytokines through sponging miR-124-3p and regulating IRF1 expression.

8.
Mitochondrion ; 71: 76-82, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37307934

RESUMEN

Pulmonary fibrosis (PF) is a serious lung disease characterized by diffuse alveolitis and disruption of alveolar structure, with a poor prognosis and unclear etiopathogenesis. While ageing, oxidative stress, metabolic disorders, and mitochondrial dysfunction have been proposed as potential contributors to the development of PF, effective treatments for this condition remain elusive. However, Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), a peptide encoded by the mitochondrial genome, has shown promising effects on glucose and lipid metabolism, cellular and mitochondrial homeostasis, as well as the reduction of systemic inflammatory responses, and is being investigated as a potential exercise mimetic. Additionally, dynamic expression changes of MOTS-c have been closely linked to ageing and ageing-related diseases, indicating its potential as an exercise mimetic. Therefore, the review aims to comprehensively analyze the available literature on the potential role of MOTS-c in improving PF development and to identify specific therapeutic targets for future treatment strategies.


Asunto(s)
Mitocondrias , Péptidos , Humanos , Mitocondrias/metabolismo , Envejecimiento , Factores de Transcripción/metabolismo , Fibrosis , Proteínas Mitocondriales/metabolismo
10.
Genes Immun ; 24(3): 139-148, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37231189

RESUMEN

In order to explore whether αCGRP (Calca) deficiency aggravates pulmonary fibrosis (PF). Clinical data from patients with PF (n = 52) were retrospectively analyzed. Lung tissue from a bleomycin (BLM)-induced rat model was compared with that of Calca-knockout (KO) and wild type (WT) using immunohistochemistry, RNA-seq, and UPLC-MS/MS metabolomic analyses. The results showed that decreased αCGRP expression and activation of the type 2 immune response were detected in patients with PF. In BLM-induced and Calca-KO rats, αCGRP deficiency potentiated apoptosis of AECs and induced M2 macrophages. RNA-seq identified enrichment of pathways involved in nuclear translocation and immune system disorders in Calca-KO rats compared to WT. Mass spectrometry of lung tissue from Calca-KO rats showed abnormal lipid metabolism, including increased levels of LTB4, PDX, 1-HETE. PPAR pathway signaling was significantly induced in both transcriptomic and metabolomic datasets in Calca-KO rats, and immunofluorescence analysis confirmed that the nuclear translocation of PPARγ in BLM-treated and Calca-KO rats was synchronized with STAT6 localization in the cytoplasmic and nuclear fractions. In conclusion, αCGRP is protective against PF, and αCGRP deficiency promotes M2 polarization of macrophages, probably by activating the PPARγ pathway, which leads to activation of the type 2 immune response and accelerates PF development.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratas , Bleomicina/efectos adversos , Cromatografía Liquida , PPAR gamma/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Estudios Retrospectivos , Transducción de Señal , Espectrometría de Masas en Tándem
11.
Curr Issues Mol Biol ; 45(1): 752-764, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36661536

RESUMEN

Chronic HBV infection is a major cause of cirrhosis and hepatocellular carcinoma. Finding host factors involved in the viral life cycle and elucidating their mechanisms is essential for developing innovative strategies for treating HBV. The HBV core protein has pleiotropic roles in HBV replication; thus, finding the interactions between the core protein and host factors is important in clarifying the mechanism of viral infection and proliferation. Recent studies have revealed that core proteins are involved in cccDNA formation, transcriptional regulation, and RNA metabolism, in addition to their primary functions of capsid formation and pgRNA packaging. Here, we report the interaction of the core protein with MCMs, which have an essential role in host DNA replication. The knockdown of MCM2 led to increased viral replication during infection, suggesting that MCM2 serves as a restriction factor for HBV proliferation. This study opens the possibility of elucidating the relationship between core proteins and host factors and their function in viral proliferation.

12.
Rev. bras. cir. cardiovasc ; 38(6): e20220260, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1514975

RESUMEN

ABSTRACT Introduction: Thoracic aortic aneurysm is a potentially fatal disease with a strong genetic contribution. The dysfunction of vascular smooth muscle cells (VSMCs) contributes to the formation of this aneurysm. Although previous studies suggested that long non-coding ribonucleic acid (RNA) hypoxia inducible factor 1 α-antisense RNA 1 (HIF1A-AS1) exerted a vital role in the progression and pathogenesis of thoracic aortic aneurysm, we managed to find a new regulatory mechanism of HIF1A-AS1 in VSMCs via transcriptomics. Methods: Cell viability was detected by the cell counting kit-8 assay. Cell apoptosis was assessed by Annexin V-fluorescein isothiocyanate/propidium iodide double staining. Transwell migration assay and wound healing assay were performed to check the migration ability of HIF1A-AS1 on VSMCs. The NextSeq XTen system (Illumina) was used to collect RNA sequencing data. Lastly, reverse transcription-quantitative polymerase chain reaction confirmed the veracity and reliability of RNA-sequencing results. Results: We observed that overexpressing HIF1A-AS1 successfully promoted apoptosis, significantly altered cell cycle distribution, and greatly attenuated migration in VSMCs, further highlighting the robust promoting effects of HIF1A-AS1 to thoracic aortic aneurysm. Moreover, transcriptomics was implemented to uncover its underlying mechanism. A total of 175 differently expressed genes were identified, with some of them enriched in apoptosis, migration, and cell cycle-related pathways. Intriguingly, some differently expressed genes were noted in vascular development or coagulation function pathways. Conclusion: We suggest that HIF1A-AS1 mediated the progression of thoracic aortic aneurysm by not only regulating the function of VSMCs, but also altering vascular development or coagulation function.

13.
Eur Spine J ; 31(10): 2493-2501, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842492

RESUMEN

PURPOSE: We conducted this meta-analysis of randomized controlled trials (RCTs) to compare the efficacy of different doses of intravenous tranexamic acid (TXA) in spinal surgery. METHODS: We searched relevant academic articles from PubMed, Embase, the Cochrane Library, and CNKI. Two reviewers independently selected studies, assessed quality, extracted data, and evaluated the risk of bias. RevMan 5.4 was used for data analysis. RESULTS: Ten randomized controlled trials (RCTs) met the inclusion criteria and were identified, including 740 patients. According to the different dose regimens of intravenous TXA, the included studies' patients were divided into the high dose of intravenous TXA group and the low dose of intravenous TXA group. Compared with the low-dose group, the high-dose group can reduce the intraoperative blood loss (MD = - 100.87, 95% CI: [- 147.81, - 53.92], P < 0.0001). For the postoperative Hb and HCT, the high-dose group can separately maintain 4.54 g/dL (MD = 4.54, 95% CI: [2.08, 6.99], P = 0.003) and 1.27% (MD = 1.27, 95% CI: [0.59, 1.94], P = 0.0002). There were no statistically significant differences in total blood loss, preoperative Hb and HCT, operative time, and blood transfusion rate between the high-dose group and the low-dose group. CONCLUSIONS: Based on the present meta-analysis, compared with the low-dose of intravenous TXA in spinal surgery, the high dose of intravenous TXA decreases the intraoperative blood loss and preserves higher postoperative Hb and HCT levels without increasing the operative time and blood transfusion rate.


Asunto(s)
Antifibrinolíticos , Ácido Tranexámico , Administración Intravenosa , Antifibrinolíticos/uso terapéutico , Pérdida de Sangre Quirúrgica/prevención & control , Transfusión Sanguínea , Humanos
14.
Chem Biol Interact ; 362: 109963, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550146

RESUMEN

4-Hydroxynonenal (4-HNE), the most toxic end-product of lipid peroxidation formed during oxidative stress, has been implicated in many diseases including neurodegenerative diseases, metabolic diseases, myocardial diseases, cancer and age-related diseases. 4-HNE can actively react with DNA, proteins and lipids, causing rapid cell death. The accumulation of 4-HNE leads to induction of autophagy, which clears damaged proteins and organelles. However, the underlying mechanism of 4-HNE-regulated autophagy is still not known. Transcriptional factor EB (TFEB) is a master regulator of lysosomal and autophagic functions, which we show here that TFEB is activated by 4-HNE. 4-HNE induces TFEB nuclear translocation and activated TFEB then upregulates the expression of genes required for autophagic and lysosomal biogenesis and function. Reactive oxygen species and Ca2+ are required in this process and TFEB activity is required for 4-HNE-mediated lysosomal function. Most importantly, genetic inhibition of TFEB (TFEB-KO) exacerbates 4-HNE-induced cell death, suggesting that TFEB is essential for cellular adaptive response to 4-HNE-induced cell damage. Hence, targeting TFEB to promote autophagic and lysosomal function may represent a promising approach to treat neurodegenerative and metabolic diseases in which 4-HNE accumulation has been implicated.


Asunto(s)
Aldehídos , Lisosomas , Aldehídos/metabolismo , Aldehídos/farmacología , Apoptosis , Autofagia/genética , Lisosomas/metabolismo , Regulación hacia Arriba
15.
Thromb Res ; 211: 38-48, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066205

RESUMEN

BACKGROUND: Deep vein thrombosis (DVT) is a serious venous thromboembolism and leads the morbidity and mortality worldwide. Circular RNAs (circRNAs) sever as the important function biomarkers in various diseases, including DVT. However, the regulatory mechanism of circRNAs in DVT remains unclear. Here, we aimed to explore the function and potential mechanism of circRNAs in lower extremity deep vein thrombosis formation in DVT. METHODS: QRT-PCR and western blot were performed to detect the expression of hsa_circ_0001020, miR-29c-3p, and MDM2 expression in human peripheral blood of DVT and endothelial progenitor cells (EPCs), respectively. Flow cytometry, RNA FISH and immunofluorescence detected the expression of distribution of circ_0001020 and CD31+ and CD34+ cells. RIP, RNA-pull down, and dual-luciferase reporter gene system were used to determine the binding relationship between hsa_circ_0001020, miR-29c-3p, and MDM2. Wound healing, transwell, and tube formation assays detected cell migration, invasion, and angiogenesis in vitro. DVT mice model was constructed to validate the function of hsa_circ_0001020, and H&E and Carstairs staining were performed to evaluate the pathology of inferior vena cava (IVC). RESULTS: Hsa_circ_0001020 and MDM2 upregulated, whereas miR-29c-3p downregulated in DVT patients and mouse model. Hsa_circ_0001020 sponged miR-29c-3p to promote MDM2 expression thus inhibited EPC migration, invasion and tube formation. And the function of hsa_circ_0001020 and regulatory mechanism was demonstrated by the lose-function of hsa_circ_0001020 and rescue experiment. In DVT mice, hsa_circ_0001020 knockdown suppressed thrombosis and promoted homing ability of EPCs into thrombi. CONCLUSION: Our finding demonstrated a novel signaling pathway involving hsa_circ_0001020, miR-29c-3p, MDM2, which might be a potential therapeutic target for DVT.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas c-mdm2 , ARN Circular , Trombosis de la Vena , Animales , Proliferación Celular , Humanos , Extremidad Inferior , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Circular/genética , Trombosis de la Vena/genética
16.
Vascular ; 30(3): 577-589, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34024202

RESUMEN

OBJECTS: Deep vein thrombosis is a type of severe venous thromboembolism that can result in high mortality and morbidity. The expression alternation of circular RNAs (circRNAs) has been found in various diseases. However, the function of circRNAs in deep vein thrombosis still remains unknown. METHOD: The blood samples of deep vein thrombosis patients and health control were selected, circRNA microarray was performed, and qPCR was used to verify the expression of circRNAs. Also, GO/KEGG analysis was performed, and hsa_circ_RNA_000455-targeted miRNA-mRNA network was predicted. RESULT: Here, we found that 303 circRNAs were differentially expressed in deep vein thrombosis using microarray, of which 83 circRNAs were upregulated and 220 circRNAs were downregulated. The expression of five circRNAs verified by quantitative real-time PCR was consistent with the result of microarray. GO analysis showed that the top 100 differentially expressed circRNAs in deep vein thrombosis patients were closely related to protein transport, cytoplasm, and Adenosine Triphosphate (ATP) binding. The most significantly enriched pathways by KEGG analysis included thyroid hormone-signaling pathway, endocytosis, proteoglycans in cancer, Fc gamma R-mediated phagocytosis, focal adhesion, insulin-signaling pathway, p53-signaling pathway, biosynthesis of antibiotics, bacterial invasion of epithelial cells, and AMP-activated protein kinase-signaling pathway. Then, hsa_circ_000455 was selected, and the function of hsa_circ_000455 in the pathogenesis of deep vein thrombosis was analyzed via circRNA-miRNA-mRNA network. We therefore hypothesized that hsa_circRNA_000455/hsa-miR-22-3p/NLRP3 may involve in the development of deep vein thrombosis. CONCLUSION: This study provided valuable information on circRNA profile in deep vein thrombosis for the first time and gave clues on the possible role and mechanism of hsa_circRNA_000455 in deep vein thrombosis.


Asunto(s)
MicroARNs , Trombosis de la Vena , Biomarcadores , Humanos , MicroARNs/genética , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trombosis de la Vena/genética
17.
Front Biosci (Landmark Ed) ; 27(12): 330, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36624952

RESUMEN

BACKGROUND: Long non-coding RNA (lncRNA) hypoxia inducible factor 1α-antisense RNA 1 (HIF1A-AS1) serves critical roles in cardiovascular diseases (CVDs). Vascular endothelial cells (VECs) are vulnerable to stimuli. Our previous study revealed that knockdown of HIF1A-AS1 reduces palmitic acid-induced apoptosis and promotes the proliferation of human VECs (HUVECs); however, the underlying mechanism remains unclear. MATERIAL AND METHODS: Cell Counting Kit-8, flow cytometry, transwell invasion, and wound healing were applied to detect the function of HUVECs. Moreover, miRNA sequencing (miRNA-seq) and RNA sequencing (RNA-seq) were conducted to uncover its underlying mechanism. Quantitative Polymerase Chain Reaction (qPCR) was implemented to assess the accuracy of miRNA-seq. A co-expression network was generated to determine the relationship between differentially expressed miRNAs (DEmiRNAs) and differentially expressed genes (DEGs). RESULTS: Knockdown of HIF1A-AS1 promoted the proliferation, migration, and invasion but reduced the apoptosis of HUVECs, and the overexpression of this lncRNA had the opposite effect. Numerous DEmiRNAs and DEGs were identified, which might contribute to this phenomenon. Multiple target genes of DEmiRNAs were associated with cell proliferation and apoptosis, and overlapped with DEGs identified from RNA-seq. Finally, the network manifested that lncRNA HIF1A-AS1 moderated the function of HUVECs by not only regulating the expression of some genes directly but also by influencing a few miRNAs to indirectly mediate the expression of mRNAs. CONCLUSIONS: The results suggested that HIF1A-AS1 might regulate HUVEC function by not only regulating the expression of some genes directly but also by influencing some miRNAs to indirectly mediate the expression level of mRNA.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales/metabolismo , ARN Mensajero/genética , ARN sin Sentido/genética , Proliferación Celular/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
18.
Viruses ; 13(11)2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34835134

RESUMEN

Mutations in HBsAg, the surface antigen of the hepatitis B virus (HBV), might affect the serum HBV DNA level of HBV-infected patients, since the reverse transcriptase (RT) domain of HBV polymerase overlaps with the HBsAg-coding region. We previously identified a diagnostic escape mutant (W3S) HBV that produces massively glycosylated HBsAg. In this study, we constructed an HBV-producing vector that expresses W3S HBs (pHB-W3S) along with a wild-type HBV-producing plasmid (pHB-WT) in order to analyze the physicochemical properties, replication, and antiviral drug response of the mutant. Transfection of either pHB-WT or W3S into HepG2 cells yielded similar CsCl density profiles and eAg expression, as did transfection of a glycosylation defective mutant, pHB-W3S (N146G), in which a glycosylation site at the 146aa asparagine (N) site of HBs was mutated to glycine (G). Virion secretion, however, seemed to be severely impaired in cases of pHB-W3S and pHB-W3S (N146G), compared with pHB-WT, as determined by qPCR and Southern blot analysis. Furthermore, inhibition of glycosylation using tunicamycinTM on wild-type HBV production also reduced the virion secretion. These results suggested that the HBV core and Dane particle could be formed either by massively glycosylated or glycosylation-defective HBsAg, but reduced and/or almost completely blocked the virion secretion efficiency, indicating that balanced glycosylation of HBsAg is required for efficient release of HBV, and mutations inducing an imbalanced glycosylation of HBs would cause the virion to become stuck in the cells, which might be associated with various pathogeneses due to HBV infection.


Asunto(s)
Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B , Hepatitis B/virología , Glicosilación , Células Hep G2 , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Humanos , Mutación , Replicación Viral
19.
Oxid Med Cell Longev ; 2021: 5583215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336103

RESUMEN

Reactive oxygen species (ROS) are highly reactive molecules that can oxidize proteins, lipids, and DNA. Under physiological conditions, ROS are mainly generated in the mitochondria during aerobic metabolism. Under pathological conditions, excessive ROS disrupt cellular homeostasis. High levels of ROS result in severe oxidative damage to the cellular machinery. However, a low/mild level of ROS could serve as a signal to trigger cell survival mechanisms. To prevent and cope with oxidative damage to biomolecules, cells have developed various antioxidant and detoxifying mechanisms. Meanwhile, ROS can initiate autophagy, a process of self-clearance, which helps to reduce oxidative damage by engulfing and degrading oxidized substance. This review summarizes the interactions among ROS, autophagy, and antioxidant pathways. The effects of natural phytochemicals on autophagy induction, antioxidation, and dual-function are also discussed.


Asunto(s)
Antioxidantes/metabolismo , Autofagia/genética , Especies Reactivas de Oxígeno/metabolismo , Humanos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...