Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(6): 2555-2569, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594216

RESUMEN

Gibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins. In this study, we combined GA response assays with protein-protein interaction analysis to infer the connection between Arabidopsis thaliana DELLAs and the C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), a phosphatase involved in the dephosphorylation of RNA polymerase II. We show that CPL3 directly interacts with DELLA proteins and promotes DELLA protein stability by inhibiting its degradation by the 26S proteasome. Consequently, CPL3 negatively modulates multiple GA-mediated processes of plant development, including hypocotyl elongation, flowering time, and anthocyanin accumulation. Taken together, our findings demonstrate that CPL3 serves as a novel regulator that could improve DELLA stability and thereby participate in GA signaling transduction.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Unión Proteica , Giberelinas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Flores/genética , Proteolisis , Estabilidad Proteica , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Transducción de Señal , Antocianinas/metabolismo , Fosforilación
2.
Physiol Plant ; 176(1): e14206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356346

RESUMEN

Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.


Asunto(s)
Betaína/análogos & derivados , Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Odorantes , Genes de Plantas
3.
Rice (N Y) ; 16(1): 57, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071259

RESUMEN

Chlorophyll degradation is an important physiological process and is essential for plant growth and development. However, how chlorophyll degradation is controlled at the cellular and molecular level remains largely elusive. Pectin is a main component of the primary cell wall, and polygalacturonases (PGs) is a group of pectin-hydrolases that cleaves the pectin backbone and release oligogalacturonide. Whether and how PGs affect chlorophyll degradation metabolism and its association with ethylene (ETH) have not been reported before. Here, we report a novel function of PG in a mutant 'high chlorophyll content1' hcc1, which displayed a decrease in growth and yield. Our morphological, biochemical and genetic analyses of hcc1, knockout lines and complementation lines confirm the function of HCC1 in chlorophyll degradation. In hcc1, the PG activity, ETH content and D-galacturonic acid (D-GA) was significantly decreased and showed an increase in the thickness of the cell wall. Exogenous application of ETH and D-GA can increase ETH content and induce the expression of HCC1, which further can successfully induce the chlorophyll degradation in hcc1. Together, our data demonstrated a novel function of HCC1 in chlorophyll degradation via the ETH pathway.

4.
New Phytol ; 239(1): 189-207, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129076

RESUMEN

The histone variant H2A.Z plays key functions in transcription and genome stability in all eukaryotes ranging from yeast to human, but the molecular mechanisms by which H2A.Z is incorporated into chromatin remain largely obscure. Here, we characterized the two homologs of yeast Chaperone for H2A.Z-H2B (Chz1) in Arabidopsis thaliana, AtChz1A and AtChz1B. AtChz1A/AtChz1B were verified to bind to H2A.Z-H2B and facilitate nucleosome assembly in vitro. Simultaneous knockdown of AtChz1A and AtChz1B, which exhibit redundant functions, led to a genome-wide reduction in H2A.Z and phenotypes similar to those of the H2A.Z-deficient mutant hta9-1hta11-2, including early flowering and abnormal flower morphologies. Interestingly, AtChz1A was found to physically interact with ACTIN-RELATED PROTEIN 6 (ARP6), an evolutionarily conserved subunit of the SWR1 chromatin-remodeling complex. Genetic interaction analyses showed that atchz1a-1atchz1b-1 was hypostatic to arp6-1. Consistently, genome-wide profiling analyses revealed partially overlapping genes and fewer misregulated genes and H2A.Z-reduced chromatin regions in atchz1a-1atchz1b-1 compared with arp6-1. Together, our results demonstrate that AtChz1A and AtChz1B act as histone chaperones to assist the deposition of H2A.Z into chromatin via interacting with SWR1, thereby playing critical roles in the transcription of genes involved in flowering and many other processes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ensamble y Desensamble de Cromatina , Chaperonas de Histonas , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Nat Commun ; 13(1): 5636, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163360

RESUMEN

METTL4 belongs to a subclade of MT-A70 family members of methyltransferase (MTase) proteins shown to mediate N6-adenosine methylation for both RNA and DNA in diverse eukaryotes. Here, we report that Arabidopsis METTL4 functions as U2 snRNA MTase for N6-2'-O-dimethyladenosine (m6Am) in vivo that regulates flowering time, and specifically catalyzes N6-methylation of 2'-O-methyladenosine (Am) within a single-stranded RNA in vitro. The apo structures of full-length Arabidopsis METTL4 bound to S-adenosyl-L-methionine (SAM) and the complex structure with an Am-containing RNA substrate, combined with mutagenesis and in vitro enzymatic assays, uncover a preformed L-shaped, positively-charged cavity surrounded by four loops for substrate binding and a catalytic center composed of conserved residues for specific Am nucleotide recognition and N6-methylation activity. Structural comparison of METTL4 with the mRNA m6A enzyme METTL3/METTL14 heterodimer and modeling analysis suggest a catalytic mechanism for N6-adenosine methylation by METTL4, which may be shared among MT-A70 family members.


Asunto(s)
Arabidopsis , Metiltransferasas , Adenosina/análogos & derivados , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación , Metiltransferasas/metabolismo , Nucleótidos/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , S-Adenosilmetionina/metabolismo
6.
Nat Plants ; 8(9): 1108-1117, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995835

RESUMEN

MYB and basic helix-loop-helix (bHLH) transcription factors form complexes to regulate diverse metabolic and developmental processes in plants. However, the molecular mechanisms responsible for MYB-bHLH interaction and partner selection remain unclear. Here, we report the crystal structures of three MYB-bHLH complexes (WER-EGL3, CPC-EGL3 and MYB29-MYC3), uncovering two MYB-bHLH interaction modes. WER and CPC are R2R3- and R3-type MYBs, respectively, but interact with EGL3 through their N-terminal R3 domain in a similar mode. A single amino acid of CPC, Met49, is crucial for competition with WER to interact with EGL3. MYB29, a R2R3-type MYB transcription factor, interacts with MYC3 by its C-terminal MYC-interaction motif. The WER-EGL3 and MYB29-MYC3 binding modes are widely applied among MYB-bHLH complexes in Arabidopsis and evolve independently in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
New Phytol ; 230(5): 1967-1984, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33606283

RESUMEN

Chromatin modifications play important roles in plant adaptation to abiotic stresses, but the precise function of histone H3 lysine 36 (H3K36) methylation in drought tolerance remains poorly evaluated. Here, we report that SDG708, a specific H3K36 methyltransferase, functions as a positive regulator of drought tolerance in rice. SDG708 promoted abscisic acid (ABA) biosynthesis by directly targeting and activating the crucial ABA biosynthesis genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (OsNCED3) and NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 5 (OsNCED5). Additionally, SDG708 induced hydrogen peroxide accumulation in the guard cells and promoted stomatal closure to reduce water loss. Overexpression of SDG708 concomitantly enhanced rice drought tolerance and increased grain yield under normal and drought stress conditions. Thus, SDG708 is potentially useful as an epigenetic regulator in breeding for grain yield improvement.


Asunto(s)
Oryza , Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Histona Metiltransferasas , Histonas , Metiltransferasas/genética , Oryza/genética , Oryza/metabolismo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética
8.
Nat Commun ; 11(1): 5717, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177521

RESUMEN

While the yeast Chz1 acts as a specific histone-chaperone for H2A.Z, functions of CHZ-domain proteins in multicellular eukaryotes remain obscure. Here, we report on the functional characterization of OsChz1, a sole CHZ-domain protein identified in rice. OsChz1 interacts with both the canonical H2A-H2B dimer and the variant H2A.Z-H2B dimer. Within crystal structure the C-terminal region of OsChz1 binds H2A-H2B via an acidic region, pointing to a previously unknown recognition mechanism. Knockout of OsChz1 leads to multiple plant developmental defects. At genome-wide level, loss of OsChz1 causes mis-regulations of thousands of genes and broad alterations of nucleosome occupancy as well as reductions of H2A.Z-enrichment. While OsChz1 associates with chromatin regions enriched of repressive histone marks (H3K27me3 and H3K4me2), its loss does not affect the genome landscape of DNA methylation. Taken together, it is emerging that OsChz1 functions as an important H2A/H2A.Z-H2B chaperone in dynamic regulation of chromatin for higher eukaryote development.


Asunto(s)
Cromatina/metabolismo , Histonas/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Cromatina/genética , Metilación de ADN , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Histonas/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Nucleosomas/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Multimerización de Proteína
9.
Proc Natl Acad Sci U S A ; 117(48): 30391-30399, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199628

RESUMEN

Nucleosome Assembly Protein 1 (NAP1) family proteins are evolutionarily conserved histone chaperones that play important roles in diverse biological processes. In this study, we determined the crystal structure of Arabidopsis NAP1-Related Protein 1 (NRP1) complexed with H2A-H2B and uncovered a previously unknown interaction mechanism in histone chaperoning. Both in vitro binding and in vivo plant rescue assays proved that interaction mediated by the N-terminal α-helix (αN) domain is essential for NRP1 function. In addition, the C-terminal acidic domain (CTAD) of NRP1 binds to H2A-H2B through a conserved mode similar to other histone chaperones. We further extended previous knowledge of the NAP1-conserved earmuff domain by mapping the amino acids of NRP1 involved in association with H2A-H2B. Finally, we showed that H2A-H2B interactions mediated by αN, earmuff, and CTAD domains are all required for the effective chaperone activity of NRP1. Collectively, our results reveal multiple interaction modes of a NAP1 family histone chaperone and shed light on how histone chaperones shield H2A-H2B from nonspecific interaction with DNA.


Asunto(s)
Histonas/química , Modelos Moleculares , Proteína 1 de Ensamblaje de Nucleosomas/química , Secuencias de Aminoácidos , Aminoácidos , Arabidopsis , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Histonas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
10.
PLoS One ; 10(6): e0130172, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26102588

RESUMEN

We induced mutants, stripe1-2 (st1-2) and stripe1-3 (st1-3), from rice (Oryza sativa L.) Indica 9311 using Ethyl methanesulfonate (EMS). Both st1-2 and st1-3 mutants encoded the small subunit of ribonucleotide reductase 1 (RNRS1), differed in the location of the mutated base, and displayed white-stripe from the L2 stage through maturity. The mutants were sensitive to temperature, and their chlorophyll content increased with the increase in temperature; however, they did not revert to normal green leaf phenotype under field conditions. The mutant st1-2 showed loosely arranged thylakoid lamellar structure as compared with wild-type (WT) plants. Contrastingly, st1-3 displayed normal thylakoid lamellar structure, good agronomic traits, and higher yield than st1-2 but lower yield than WT. Three-dimensional structure prediction for RNRS1 indicated that the mutation in Val-171 residue in st1-2 influenced the connection of RNRS1 to iron, causing abnormal development of chloroplasts. Real-time PCR analysis showed that the expression levels associated with chlorophyll biosynthetic pathway and photosynthesis were affected in st1-2 and st1-3 at different temperatures and different developmental stages.


Asunto(s)
Clorofila/biosíntesis , Genes de Plantas , Mutación , Oryza/genética , Ribonucleótido Reductasas/genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...