Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123079, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061435

RESUMEN

The simultaneous presence of micro(nano)plastics (MNPs) and pollutants represents a prevalent environmental challenge that necessitates understanding their combined impact on toxicity. This study examined the distribution of 5 µm (PS-MP5) and 50 nm (PS-NP50) polystyrene plastic particles during the early developmental stages of marine medaka (Oryzias melastigma) and assessed their combined toxicity with triphenyltin (TPT). Results showed that 2 mg/L PS-MP5 and PS-NP50 could adhere to the embryo surface. PS-NP50 can passively enter the larvae and accumulate predominantly in the intestine and head, while PS-MP5 cannot. Nonetheless, both types can be actively ingested by the larvae and distributed in the intestine. 2 mg/L PS-MNPs enhance the acute toxicity of TPT. Interestingly, high concentrations of PS-NP50 (20 mg/L) diminish the acute toxicity of TPT due to their sedimentation properties and interactions with TPT. 200 µg/L PS-MNPs and 200 ng/L TPT affect complement and coagulation cascade pathways and cardiac development of medaka larvae. PS-MNPs exacerbate TPT-induced cardiotoxicity, with PS-NP50 exhibiting stronger effects than PS-MP5, which may be related to the higher adsorption capacity of NPs to TPT and their ability to enter the embryos before hatching. This study elucidates the distribution of MNPs during the early developmental stages of marine medaka and their effects on TPT toxicity, offering a theoretical foundation for the ecological risk assessment of MNPs.


Asunto(s)
Compuestos Orgánicos de Estaño , Oryzias , Contaminantes Químicos del Agua , Animales , Cardiotoxicidad , Contaminantes Químicos del Agua/análisis , Poliestirenos/metabolismo , Larva , Plásticos/metabolismo
2.
Sci Total Environ ; 912: 169344, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38097088

RESUMEN

This study aims to investigate the impact of tralopyril, a newly developed marine antifouling agent, on the reproductive endocrine system and developmental toxicity of offspring in marine medaka. The results revealed that exposure to tralopyril (0, 1, 20 µg/L) for 42 days resulted in decreased reproductive capacity in marine medaka. Moreover, it disrupted the levels of sex hormones E2 and T, as well as the transcription levels of genes related to the HPG axis, such as cyp19b and star. Sex-dependent differences were observed, with females experiencing more pronounced effects. Furthermore, intergenerational toxicity was observed in F1 offspring, including increased heart rate, changes in retinal morphology and cartilage structure, decreased swimming activity, and downregulation of transcription levels of relevant genes (HPT axis, GH/IGF axis, cox, bmp4, bmp2, runx2, etc.). Notably, the disruption of the F1 endocrine system by tralopyril persisted into adulthood, indicating a transgenerational effect. Molecular docking analysis suggested that tralopyril's RA receptor activity might be one of the key factors contributing to the developmental toxicity observed in offspring. Overall, our study highlights the potential threat posed by tralopyril to the sustainability of fish populations, as it can disrupt the endocrine system and negatively impact aquatic organisms for multiple generations.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Oryzias/fisiología , Simulación del Acoplamiento Molecular , Sistema Endocrino , Pirroles , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...