Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893450

RESUMEN

Isoflavones are a class of natural products that exhibit a wide range of interesting biological properties, including antioxidant, hepatoprotective, antimicrobial, and anti-inflammatory activities. Scandenone (1), osajin (2), and 6,8-diprenylgenistein (3) are natural prenylated isoflavones that share the same polyphenol framework. In this research, the key intermediate 15 was used for the synthesis of the natural isoflavones 1-3, establishing a stereoselective synthetic method for both linear and angular pyran isoflavones. The antibacterial activities of 1-3 were also evaluated, and all of them displayed good antibacterial activity against Gram-positive bacteria. Among them, 2 was the most potent one against MRSA, with a MIC value of 2 µg/mL, and the SEM assay indicated that the bacterial cell membranes of both MRSA and E. faecalis could be disrupted by 2. These findings suggest that this type of isoflavone could serve as a lead for the development of novel antibacterial agents for the treatment of Gram-positive bacterial infections.


Asunto(s)
Antibacterianos , Isoflavonas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Isoflavonas/farmacología , Isoflavonas/química , Isoflavonas/síntesis química , Estructura Molecular , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/síntesis química , Enterococcus faecalis/efectos de los fármacos
2.
Acta Pharmacol Sin ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902501

RESUMEN

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

3.
Neurochem Int ; 177: 105744, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663454

RESUMEN

Traumatic brain injury (TBI) often results in persistent neurological dysfunction, which is closely associated with white matter injury. The mechanisms underlying white matter injury after TBI remain unclear. Ferritinophagy is a selective autophagic process that degrades ferritin and releases free iron, which may cause ferroptosis. Although ferroptosis has been demonstrated to be involved in TBI, it is unclear whether ferritinophagy triggers ferroptosis in TBI. Integrated stress response inhibitor (ISRIB) has neuroprotective properties. However, the effect of ISRIB on white matter after TBI remains uncertain. We aimed to investigate whether ferritinophagy was involved in white matter injury following TBI and whether ISRIB can mitigate white matter injury after TBI by inhibiting ferritinophagy. In this study, controlled cortical impact (CCI) was performed on rats to establish the TBI model. Ferritinophagy was measured by assessing the levels of nuclear receptor coactivator 4 (NCOA4), which regulates ferritinophagy, ferritin heavy chain 1(FTH1), LC3, ATG5, and FTH1 colocalization with LC3 in the white matter. Increased NCOA4 and decreased FTH1 were detected in our study. FTH1 colocalization with LC3 enhanced in the white matter after TBI, indicating that ferritinophagy was activated. Immunofluorescence co-localization results also suggested that ferritinophagy occurred in neurons and oligodendrocytes after TBI. Furthermore, ferroptosis was assessed by determining free iron content, MDA content, GSH content, and Perl's staining. The results showed that ferroptosis was suppressed by NCOA4 knockdown via shNCOA4 lentivirus infection, indicating that ferroptosis in TBI is triggered by ferritinophagy. Besides, NCOA4 deletion notably improved white matter injury following TBI, implying that ferritinophagy contributed to white matter injury. ISRIB treatment reduced the occurrence of ferritinophagy in neurons and oligodendrocytes, attenuated ferritinophagy-induced ferroptosis, and alleviated white matter injury. These findings suggest that NCOA4-mediated ferritinophagy is a critical mechanism underlying white matter injury after TBI. ISRIB holds promise as a therapeutic agent for this condition.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferritinas , Coactivadores de Receptor Nuclear , Ratas Sprague-Dawley , Sustancia Blanca , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/efectos de los fármacos , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Masculino , Ratas , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
4.
ACS Chem Neurosci ; 15(2): 245-257, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38133816

RESUMEN

Development of potential inhibitors to prevent prion protein (PrP) fibrillation is a therapeutic strategy for prion diseases. The prion neuropeptide PrP106-126, a research model of abnormal PrP (PrPSc), presents similar physicochemical and biochemical characters to PrPSc, which is also a target of potential inhibitors against prion deposition. Many flavones have antioxidant, anti-inflammatory, and antibacterial properties, and they are applied in treating prion disorder and other amyloidosis as well. However, the inhibition mechanism of flavones on PrP106-126 fibrillation is still unclear. In the current work, apigenin and nepetin were used to suppress the aggregation of PrP106-126 and to alleviate the peptide-induced cytotoxicity. The results showed that apigenin and nepetin impeded the fibril formation of PrP106-126 and depolymerized the preformed fibrils. They were bound to PrP106-126 predominantly by hydrophobic and hydrogen bonding interactions. In addition, both flavones upregulated cell viability and decreased membrane leakage through reducing peptide oligomerization. The differences in inhibition and cell protection between the two small molecules were presumably attributed to the substitution of hydroxyl and methoxy groups in nepetin, which demonstrated the significant structure-function relationship of flavones with prion neuropeptide and the prospect of flavonoids as drug candidates against prion diseases.


Asunto(s)
Flavonas , Neuropéptidos , Enfermedades por Prión , Priones , Humanos , Priones/metabolismo , Apigenina/farmacología , Fragmentos de Péptidos/metabolismo , Enfermedades por Prión/metabolismo , Péptidos
5.
Acta Pharm Sin B ; 13(12): 4667-4687, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045038

RESUMEN

The blood-brain barrier (BBB) impairment plays a crucial role in the pathological processes of aging-accompanied neurological diseases (AAND). Meanwhile, circadian rhythms disruption and gut microbiota dysbiosis are associated with increased morbidity of neurological diseases in the accelerated aging population. Importantly, circadian rhythms disruption and gut microbiota dysbiosis are also known to induce the generation of toxic metabolites and pro-inflammatory cytokines, resulting in disruption of BBB integrity. Collectively, this provides a new perspective for exploring the relationship among circadian rhythms, gut microbes, and the BBB in aging-accompanied neurological diseases. In this review, we focus on recent advances in the interplay between circadian rhythm disturbances and gut microbiota dysbiosis, and their potential roles in the BBB disruption that occurs in AAND. Based on existing literature, we discuss and propose potential mechanisms underlying BBB damage induced by dysregulated circadian rhythms and gut microbiota, which would serve as the basis for developing potential interventions to protect the BBB in the aging population through targeting the BBB by exploiting its links with gut microbiota and circadian rhythms for treating AAND.

6.
Aging Dis ; 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37962453

RESUMEN

Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.

7.
Chembiochem ; 24(20): e202300395, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37485551

RESUMEN

ß-Carboline alkaloids have a variety of pharmacological activities, such as antitumor, antibiosis and antidiabetes. Harmine and harmol are two structurally similar ß-carbolines that occur in many medicinal plants. In this work, we chose harmine and harmol to impede the amyloid fibril formation of human islet amyloid polypeptide (hIAPP) associated with type 2 diabetes mellitus (T2DM), by a series of physicochemical and biochemical methods. The results indicate that harmine and harmol effectively prevent peptide fibril formation and alleviate toxic oligomer species. In addition, both small molecules exhibit strong binding affinities with hIAPP mainly through hydrophobic and hydrogen bonding interactions, thus reducing the cytotoxicity induced by hIAPP. Their distinct binding pattern with hIAPP is closely linked to the molecular configuration of the two small molecules, affecting their ability to impede peptide aggregation. The study is of great significance for the application and development of ß-carboline alkaloids against T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Polipéptido Amiloide de los Islotes Pancreáticos/química , Harmina , Amiloide/química
8.
Transl Stroke Res ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37233908

RESUMEN

Analysis of a National Institutes of Health (NIH) trial shows that cigarette smoking protected tissue plasminogen activator (tPA)-treated patients from hemorrhage transformation (HT); however, the underlying mechanism is not clear. Damage to the integrity of the blood-brain barrier (BBB) is the pathological basis of HT. Here, we investigated the molecular events of BBB damage after acute ischemic stroke (AIS) using in vitro oxygen-glucose deprivation (OGD) and in vivo mice middle cerebral artery occlusion (MCAO) models. Our results showed that the permeability of bEND.3 monolayer endothelial cells was significantly increased after being exposed to OGD for 2 h. Mice were subjected to 90-min ischemia with 45-min reperfusion, and BBB integrity was significantly damaged, accompanied by tight junction protein occludin degradation, downregulation of microRNA-21 (miR-21), transforming growth factor-ß (TGF-ß), phosphorylated Smad (p-Smad), plasminogen activator inhibitor-1 (PAI-1), and the upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that has been shown to regulate TGF-ß-Smad3 pathway. In addition, pretreatment with two-week nicotine significantly reduced AIS-induced BBB damage and its associated protein dysregulation via downregulating Pdlim5. Notably, AIS did not significantly induce BBB damage in Pdlim5 deficit mice, but overexpression of Pdlim5 in the striatum with adeno-associated virus produced BBB damage and associated protein dysregulation which could be ameliorated by two-week nicotine pretreatment. More important, AIS induced a significant miR-21 decrease, and miR-21 mimics treatment decreased AIS-induced BBB damage by decreasing Pdlim5. Together, these results demonstrate that nicotine treatment alleviates the AIS-compromised integrity of BBB by regulating Pdlim5.

9.
J Cereb Blood Flow Metab ; 43(7): 1042-1059, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086081

RESUMEN

Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.


Asunto(s)
Barrera Hematoencefálica , Disfunción Cognitiva , Humanos , Barrera Hematoencefálica/metabolismo , Envejecimiento/metabolismo , Disfunción Cognitiva/patología , Inflamación/patología , Cognición , Factores de Transcripción/metabolismo
10.
Biochimie ; 211: 131-140, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36963557

RESUMEN

The misfolding and conformational transformation of prion protein (PrP) are crucial to the progression of prion diseases. Screening for available natural inhibitors against prion proteins can contribute to the rational design and development of new anti-prion drugs and therapeutic strategies. The prion neuropeptide, PrP106-126 is commonly used as a model peptide of the abnormal PrPSc, and a number of potential inhibitors were explored against the amyloid fibril formation of PrP106-126. The well-known sesquiterpene lactone, artemisinin, shows diverse biological functions in anti-malarial, anti-cancer and lowering glucose. However, its inhibitory effect on PrP106-126 fibrillation is unclear. In this work, we selected two sesquiterpene lactones, artemisinin (1) and artesunate (2), to explore their roles in PrP106-126 aggregation by a series of physicochemical and biochemical methods. The results demonstrated that 1 and 2 could effectively impede the formation of amyloid fibrils and remodel the preformed fibrils. The binding of the small molecules to PrP106-126 was dominated by electrostatic, hydrophobic and hydrogen bonding interactions. In addition, both compounds exhibited neuroprotective effects by reducing peptide oligomerization. 2 showed better inhibition and regulation on peptide aggregation and cellular viability than 1 due to its specific succinate modification. Our study provides the information of sesquiterpene lactones to prevent PrP fibril formation and other related amyloidosis.


Asunto(s)
Artemisininas , Neuropéptidos , Priones , Sesquiterpenos , Priones/química , Priones/metabolismo , Priones/farmacología , Amiloide , Sesquiterpenos/farmacología , Lactonas/farmacología , Fragmentos de Péptidos/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-36736944

RESUMEN

Tobacco smoking is a preventable cause of morbidity and mortality throughout the world. Smoking comes in form of absorption of many compounds, among which nicotine is the main psychoactive component of tobacco and its positive and negative reinforcement effects are proposed to be the key mechanism for the initiation and maintenance of smoking. Growing evidence suggests that the cognitive enhancement effects of nicotine may also contribute to the difficulty of quitting smoking, especially in individuals with psychiatric disorders. In this review, we first introduce the beneficial effect of nicotine on cognition including attention, short-term memory and long-term memory. We next summarize the beneficial effect of nicotine on cognition under pathological conditions, including Alzheimer's disease, Parkinson's disease, Schizophrenia, Stress-induced Anxiety, Depression, and drug-induced memory impairment. The possible mechanism underlying nicotine's effect is also explored. Finally, nicotine's detrimental effect on cognition is discussed, including in the prenatal and adolescent periods, and high-dose nicotine- and withdrawal-induced memory impairment is emphasized. Therefore, nicotine serves as both a friend and foe. Nicotine-derived compounds could be a promising strategy to alleviate neurological disease-associated cognitive deficit, however, due to nicotine's detrimental effect, continued educational programs and public awareness campaigns are needed to reduce tobacco use among pregnant women and smoking should be quitted even if it is e-cigarette, especially for the adolescents.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Tabaquismo , Embarazo , Femenino , Humanos , Adolescente , Nicotina/efectos adversos , Fumar/psicología , Cognición , Trastornos de la Memoria
12.
J Inorg Biochem ; 237: 111989, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36108345

RESUMEN

Human islet amyloid polypeptide (hIAPP) is associated with the pathology of Type II diabetes (T2DM) due to its misfolding and amyloid deposition. The peptide is widely concerned as a potential drug target, and the prevention of hIAPP fibrillation is a rational therapeutic strategy for T2DM. Platinum complexes are promising anticancer agents with good biocompatibility, they can resist the aggregation of amyloid peptides, while the effects of oxaliplatin and carboplatin on hIAPP fibrillation are unknown. In the present work, we selected the two platinum drugs to reveal their inhibition and disaggregation against hIAPP fibrillation by various biophysical methods. The two complexes impeded hIAPP fibril formation and dispersed the aggregates into small oligomers and most monomers. They also reduced peptides oligomerization and promoted rat insulinoma ß-cells viability. They bound to hIAPP mainly through metal coordination and hydrophobic interactions. Moreover, oxaliplatin showed better inhibition and regulation on peptides aggregation and cytotoxicity than carboplatin. This work is of important biomedical values for clinical platinum drugs against T2DM and other amyloidosis related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Animales , Humanos , Ratas , Amiloide/química , Carboplatino/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/química , Oxaliplatino/farmacología
13.
Oxid Med Cell Longev ; 2022: 7762078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092167

RESUMEN

The integrity of the blood-brain barrier (BBB) is mainly maintained by endothelial cells and basement membrane and could be regulated by pericytes, neurons, and glial cells including astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs). BBB damage is the main pathological basis of hemorrhage transformation (HT) and vasogenic edema after stroke. In addition, BBB damage-induced HT and vasogenic edema will aggravate the secondary brain tissue damage. Of note, after reperfusion, oxidative stress-initiated cascade plays a critical role in the BBB damage after acute ischemic stroke (AIS). Although endothelial cells are the target of oxidative stress, the role of glial cell-derived oxidative stress in BBB damage after AIS also should receive more attention. In the current review, we first introduce the physiology and pathophysiology of the BBB, then we summarize the possible mechanisms related to BBB damage after AIS. We aim to characterize the role of glial cell-derived oxidative stress in BBB damage after AIS and discuss the role of oxidative stress in astrocytes, microglia cells and oligodendrocytes in after AIS, respectively.


Asunto(s)
Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Células Endoteliales , Humanos , Neuroglía , Estrés Oxidativo/fisiología
14.
ACS Chem Neurosci ; 13(14): 2164-2175, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35797238

RESUMEN

Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the ß-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.


Asunto(s)
Amiloide , Berberina , Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Amiloide/farmacología , Berberina/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Polipéptido Amiloide de los Islotes Pancreáticos/química , Isoquinolinas/farmacología , Isoquinolinas/uso terapéutico , Conformación Proteica en Lámina beta
15.
Front Pharmacol ; 13: 914153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865954

RESUMEN

The recovery of spinal cord injury (SCI) is closely associated with the obstruction of oligodendrocyte progenitor cell (OPC) differentiation, which ultimately induces the inability to generate newly formed myelin. To address the concern, drug-based methods may be the most practical and feasible way, possibly applying to clinical therapies for patients with SCI. In our previous study, we found that clemastine treatment preserves myelin integrity, decreases the loss of axons, and improves functional recovery in the SCI model. Clemastine acts as an antagonist of the muscarinic acetylcholine receptor (muscarinic receptor, MR) identified from a string of anti-muscarinic drugs that can enhance oligodendrocyte differentiation and myelin wrapping. However, the effects of clemastine on OPC differentiation through MRs in SCI and the underlying mechanism remain unclear. To explore the possibility, a rat model of SCI was established. To investigate if clemastine could promote the differentiation of OPCs in SCI via MR, the expressions of OPC and mature OL were detected at 7 days post injury (dpi) or at 14 dpi. The significant effect of clemastine on encouraging OPC differentiation was revealed at 14 dpi rather than 7 dpi. Under pre-treatment with the MR agonist cevimeline, the positive role of clemastine on OPC differentiation was partially disrupted. Further studies indicated that clemastine increased the phosphorylation level of extracellular signal-regulated kinase 1/2 (p-ERK1/2) and the expressions of transcription factors, Myrf and Olig2. To determine the relationship among clemastine, ERK1/2 signaling, specified transcription factors, and OPC differentiation, the ERK1/2 signaling was disturbed by U0126. The inhibition of ERK1/2 in SCI rats treated with clemastine decreased the expressions of p-ERK 1/2, Myrf, Olig2, and mature OLs, suggesting that ERK1/2 is required for clemastine on promoting OPC differentiation and that specified transcription factors may be affected by the activity of ERK1/2. Moreover, the impact of clemastine on modulating the level of p-ERK 1/2 was restricted following cevimeline pre-injecting, which provides further evidence that the role of clemastine was mediated by MRs. Altogether, our data demonstrated that clemastine, mediated by MRs, promotes OPC differentiation under the enhancement of Myrf and Olig2 by activating ERK1/2 signaling and suggests a novel therapeutic prospect for SCI recovery.

16.
J Mater Chem B ; 10(24): 4650-4661, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35667301

RESUMEN

Biflavones are a kind of natural compound with a variety of biological activities, which have the capability of reversing diabetes and neurodegenerative diseases. The human islet amyloid polypeptide (hIAPP) is closely related to the pathological process of type II diabetes mellitus (T2DM). The development of new inhibitors is crucial to prevent hIAPP aggregation against T2DM. However, the influences of biflavones on hIAPP aggregation are unknown. In this work, we utilized a series of biophysical and biochemical techniques to seek the inhibitory effects of two biflavones on hIAPP fibril formation and their interaction mechanism. The biflavones namely amentoflavone (1), and bilobetin (2), distinctly prevented the self-assembly behavior of hIAPP, and depolymerized the aged aggregates to small oligomers and monomers. In addition, the two compounds displayed strong binding affinity to hIAPP mainly through hydrophobic and hydrogen bonding interactions, and the hydroxyl substitution in 1 was superior to the methoxy substitution in 2 at the same C8 position in impeding hIAPP aggregation. 1 and 2 also decreased hIAPP-induced cytotoxicity by reducing peptide oligomerization. This work offers useful data for understanding the roles of biflavones in hIAPP fibrillation and for the treatment of T2DM and other amyloidosis related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Amiloide de los Islotes Pancreáticos , Anciano , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo
17.
Front Pharmacol ; 13: 881732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754473

RESUMEN

A novel 4/8 subtype α-conotoxin, Vt1.27 (NCCMFHTCPIDYSRFNC-NH2), was identified from Conus vitulinus in the South China Sea by RACE methods. The peptide was synthesized and structurally characterized. Similar to other α-conotoxins that target neuronal nicotinic acetylcholine receptor (nAChR) subtypes, Vt1.27 inhibited the rat α3ß2 nAChR subtype (IC50 = 1160 nM) and was inactive at voltage-gated sodium and potassium channels in rat sensory neurons. However, Vt1.27 inhibited high voltage-activated N-type (CaV2.2) calcium channels expressed in HEK293T cells with an IC50 of 398 nM. An alanine scan of the peptide showed that residues Phe5, Pro9, Ile10, and Ser13 contribute significantly to the inhibitory activity of Vt1.27. The molecular dockings indicate that Vt1.27 inhibits the transmembrane region of CaV2.2, which is different from that of ω-conotoxins. Furthermore, Vt1.27 exhibited potent anti-allodynic effect in rat partial sciatic nerve injury (PNL) and chronic constriction injury (CCI) pain models at 10 nmol/kg level with the intramuscular injection. The pain threshold elevation of Vt1.27 groups was higher than that of α-conotoxin Vc1.1 in CCI rat models. These findings expand our knowledge of targets of α-conotoxins and potentially provide a potent, anti-allodynic peptide for the treatment of neuropathic pain.

18.
Int J Biol Macromol ; 199: 189-200, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34973981

RESUMEN

The inhibition of human islet amyloid polypeptide (hIAPP) deposition to block its toxicity is an important strategy for the prevention and treatment of type II diabetes mellitus (T2DM).Natural compounds with pharmacological properties and low toxicity can serve as a good point to discover potential inhibitors of protein misfolding, which may be useful for the treatment of various amyloidosis-related diseases. Previous studies have reported that triterpenoids, such as maslinic acid (MA) and momordicin I (MI), can modulate glucose metabolism partially by reducing insulin resistance. However, the internal antidiabetic mechanism of these triterpenoids remains unclear. In this study, we examined the inhibition and disaggregation of MAandits isomer MI on the fibrillation of hIAPP using various experimental and computational approaches. The assembly behaviors and peptide-induced cytotoxicity of hIAPP could be effectively resisted by MA and MI. Moreover, the interaction of the two triterpenoids with hIAPP displayed a spontaneous and exothermic process. Moreover, molecular dynamics simulation results of different peptides revealed that MA and MI could bind to Asn and other non-polar residues near the core C-terminal region and reduce the oligomerization of hIAPP. The binding affinity was predominantly contributed by hydrophobic, electrostatic and hydrogen bonding interactions. The present work provides valuable data for MA and MI to treat T2DM and amyloidosis-related diseases.


Asunto(s)
Amiloidosis , Diabetes Mellitus Tipo 2 , Triterpenos , Amiloide/metabolismo , Amiloidosis/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Simulación de Dinámica Molecular , Triterpenos/farmacología , Triterpenos/uso terapéutico
19.
Neurochem Res ; 47(2): 503-515, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34661796

RESUMEN

Recent evidence has shown that demyelination occurs along with axonal degeneration in spinal cord injury (SCI) during the secondary injury phase. Oligodendrocyte precursor cells (OPC) are present in the lesions but fail to differentiate into mature oligodendrocytes and form new myelin. Given the limited recovery of neuronal functions after SCI in adults without effective treatment available so far, it remains unknown whether enhancing OPC differentiation and myelination could benefit the recovery of SCI. To show the significance of myelin regeneration after SCI, the injury was treated with clemastine in the rat model. Clemastine is an FDA-approved drug that is potent in promoting oligodendrocyte differentiation and myelination in vivo, for four weeks following SCI. Motor function was assessed using sloping boards and grid walking tests and scored according to the Basso, Beattie, and Bresnahan protocol. The myelin integrity and protein expression were evaluated using transmission electron microscopy and immunofluorescence, respectively. The results indicated that clemastine treatment preserves myelin integrity, decreases loss of axons and improves functional recovery in the rat SCI model. The presented data suggest that myelination-enhancing strategies may serve as a potential therapeutic approach for the functional recovery in SCI.


Asunto(s)
Clemastina , Traumatismos de la Médula Espinal , Animales , Clemastina/metabolismo , Clemastina/farmacología , Clemastina/uso terapéutico , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Ratas , Recuperación de la Función , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
20.
J Nat Prod ; 84(11): 2866-2874, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34658231

RESUMEN

Syringin (1), a natural bioactive glucoside isolated from the root of Acanthopanax senticosus (Rupr. Maxim.) Harms, possesses significant anti-inflammatory activity. In this study, we have accomplished the total syntheses of syringin (1), along with its natural analogues 2-12, from a common starting material, syringaldehyde (13), in 4-8 steps with an overall yields of 11.8-61.3%. The anti-inflammatory activities of these compounds were determined against NO production in the LPS-stimulated RAW264.7 cells. Among them, compounds 1-5, 7, and 9 exhibited different levels of anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/síntesis química , Glucósidos/síntesis química , Fenilpropionatos/síntesis química , Animales , Antiinflamatorios/farmacología , Glucósidos/farmacología , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/biosíntesis , Fenilpropionatos/farmacología , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...