Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29522, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644815

RESUMEN

Rhizopus stolonifer is one of the main pathogens in postharvest storage logistics of more than 100 kinds of fruit, such as strawberries, tomatoes and melons. In this paper, the research on the morphology and detection, pathogenicity and infection mechanism of Rhizopus stolonifer was reviewed. The control methods of Rhizopus stolonifer in recent years was summarized from three dimensions of physics, chemistry and biology, including the nanomaterials, biological metabolites, light control bacteria, etc. Future direction of postharvest Rhizopus stolonifer infection control was analyzed from two aspects of pathogenic mechanism research and new composite technology. The information provided in this review will help researchers and technicians to deepen their understanding of the pathogenicity of Rhizopus stolonifer, and develop more effective control methods in the future.

2.
Bioprocess Biosyst Eng ; 46(1): 119-128, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36445480

RESUMEN

The utilization of wastewater in food processing factory has become one of the foremost essential and challengeable problems. In this study, cabbage wastewater was used for a mixed fermentation to obtain a high ester vinegar. The effect of fermentation conditions on the total acid content and total ester content of vinegar was investigated through single-factor experiments and response surface methodology analysis. Under the optimal fermentation conditions of 10.61% inoculation amount, 4.9% initial alcohol content, 29.62 °C fermentation temperature, 75.21 h fermentation time, and the exogenous esterification addition amount of 0.6%. The blending vinegar has a total acid content of 3.80 g 100 mL-1 and a total ester content of 30.52 mg mL-1. The significant flavor components in the blending vinegar of the ethyl lactate with a pleasant aroma accounted for 22.15% and the ethyl acetate with a strong fruit aroma accounted for 11.37%.


Asunto(s)
Ácido Acético , Brassica , Ésteres , Aguas Residuales , Ácidos , Fermentación
3.
Front Plant Sci ; 13: 952246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874007

RESUMEN

Endoplasmic reticulum-associated degradation (ERAD) is a key cellular process for degrading misfolded proteins. It was well known that an asparagine (N)-linked glycan containing a free α1,6-mannose residue is a critical ERAD signal created by Homologous to α-mannosidase 1 (Htm1) in yeast and ER-Degradation Enhancing α-Mannosidase-like proteins (EDEMs) in mammals. An earlier study suggested that two Arabidopsis homologs of Htm1/EDEMs function redundantly in generating such a conserved N-glycan signal. Here we report that the Arabidopsis irb1 (reversal of bri1) mutants accumulate brassinosteroid-insensitive 1-5 (bri1-5), an ER-retained mutant variant of the brassinosteroid receptor BRI1 and are defective in one of the Arabidopsis Htm1/EDEM homologs, AtEDEM1. We show that the wild-type AtEDEM1, but not its catalytically inactive mutant, rescues irb1-1. Importantly, an insertional mutation of the Arabidopsis Asparagine-Linked Glycosylation 3 (ALG3), which causes N-linked glycosylation with truncated glycans carrying a different free α1,6-mannose residue, completely nullifies the inhibitory effect of irb1-1 on bri1-5 ERAD. Interestingly, an insertional mutation in AtEDEM2, the other Htm1/EDEM homolog, has no detectable effect on bri1-5 ERAD; however, it enhances the inhibitory effect of irb1-1 on bri1-5 degradation. Moreover, AtEDEM2 transgenes rescued the irb1-1 mutation with lower efficacy than AtEDEM1. Simultaneous elimination of AtEDEM1 and AtEDEM2 completely blocks generation of α1,6-mannose-exposed N-glycans on bri1-5, while overexpression of either AtEDEM1 or AtEDEM2 stimulates bri1-5 ERAD and enhances the bri1-5 dwarfism. We concluded that, despite its functional redundancy with AtEDEM2, AtEDEM1 plays a predominant role in promoting bri1-5 degradation.

4.
AMB Express ; 12(1): 29, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239075

RESUMEN

Monacolin K is one of the bioactive substances produced by Monascus ruber during fermentation. The multi-factors and their interactions on the effect of solid-state fermentation of Monascus for high yield of monacolin K were attractive to industrial production. A detailed study of 7 single-factor experiments and a series of experiments with Plackette-Burman and Box-Benhnken design, data fitting and modeling, and analyzing the visual 3D response surface plots for investigation of the key factors for Monacolin K production. The results showed that initial moisture (50 ~ 55%) and bran content (4.5 ~ 5.5%) as the key factors of transport for nutrients and oxygen during the solid-state fermentation (SSF) process of Monascus. Under the optimal conditions, a temperature shifting of the SSF with a higher Monacolin K yield of 14.53 ± 0.16 mg·g- 1 compared with the content of monacolin K in the commercially available functional red yeast rice of 8 mg g- 1.

5.
Mol Plant Pathol ; 23(2): 304-312, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34820999

RESUMEN

Decay due to fungal infection is a major cause of postharvest losses in fruits. Acidic fungi may enhance their virulence by locally reducing the pH of the host. Several devastating postharvest fungi, such as Penicillium spp., Botrytis cinerea, and Sclerotinia sclerotiorum, can secrete gluconic acid, oxalic acid, or citric acid. Emerging evidence suggests that organic acids secreted by acidic fungi are important virulence factors. In this review, we summarized the research progress on the biosynthesis of organic acids, the role of the pH signalling transcription factor PacC in regulating organic acid, and the action mechanism of the main organic acid secreted via postharvest pathogenic fungi during infection of host tissues. This paper systematically demonstrates the relationships between tissue acidification and postharvest fungal pathogenicity, which will motivate the study of host-pathogen interactions and provide a better understanding of virulence mechanisms of the pathogens so as to design new technical strategies to prevent postharvest diseases.


Asunto(s)
Penicillium , Factores de Virulencia , Frutas , Hongos , Interacciones Huésped-Patógeno , Virulencia
6.
Heliyon ; 8(12): e12646, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36619447

RESUMEN

Investor sentiment is an important factor that affects stock prices, stock market returns, and asset pricing. However, the fluctuation patterns and factors influencing investor sentiment have received less attention from scholars. This study uses text messages from stock investors' social networks and natural language processing techniques to reveal sentiment fluctuation laws of stock market investors. An investor confidence index (ICI) is constructed by quantifying sentiment in investor messages on social networks. By taking this index as a proxy for sentiment, we measure the candidate fluctuation periods of investor sentiment using a Fourier transform. The significance test then determines the significant cycle of investor sentiment within seven days. Based on this, cluster analysis further reveals that investor sentiment in the 7-day cycle has a 5 + 2 cycle of variability. That is, from Monday to Friday, investor sentiment is disturbed by stock market sentiment showing profit-seeking and risk-averse preferences, while during the weekend holiday, stock market disturbance to investor sentiment becomes lower, investor sentiment is substantially higher, and volatility is narrowed, showing a typical holiday effect. The analysis also shows that the recurring cycle of 5-day trading days and 2-day holidays is a direct exogenous factor contributing to the 7-day cycle of investor sentiment. This study provides a new perspective for studying "investor sentiment," "day of the week effect," and "behavioral finance."

7.
MycoKeys ; 80: 77-90, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054325

RESUMEN

Species of Diaporthe infect a wide range of plants and live in vivo as endophytes, saprobes or pathogens. However, those in peach plants are poorly characterized. In this study, 52 Diaporthe strains were isolated from peach branches with buds, showing constriction canker symptoms. Phylogenetic analyses were conducted using five gene regions: internal transcribed spacer of the ribosomal DNA (ITS), translation elongation factor 1-α (TEF), ß-tubulin (TUB), histone (HIS), and calmodulin (CAL). These results coupled with morphology revealed seven species of Diaporthe, including five known species (D. caryae, D. cercidis, D. eres, D. hongkongensis, and D. unshiuensis). In addition, two novel species D. jinxiu and D. zaofenghuang are introduced. Except for the previously reported D. eres, this study represents the first characterization of Diaporthe species associated with peach constriction canker in China, and contributes useful data for practicable disease management.

8.
J Agric Food Chem ; 68(47): 13897-13905, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33146520

RESUMEN

Green mold caused by Penicillium digitatum is the main postharvest disease in citrus fruits. The goal of this study is to evaluate the antifungal activity of chlorine dioxide (ClO2) against P. digitatum both in vivo and in vitro and to elucidate the underlying mechanism using flow cytometry and scanning electron microscopy. The results showed that 200-1800 mg/L of ClO2 significantly inhibited the incidence of green mold on kumquats, mandarins, Peru's oranges, and grapefruits caused by P. digitatum. Additionally, 200 mg/L of ClO2 significantly induced cell apoptosis of P. digitatum by increasing the fluorescence intensity of the mitochondrial membrane potential from 118 to 1225 and decreased the living cell rate from 96.8 to 6.1%. Further study demonstrated that the content of malondialdehyde and nucleic acid leakage (OD260) of P. digitatum markedly increased, and the mycelial morphology was seriously damaged with increased ClO2 concentration. These results indicated that ClO2 could inhibit fungal growth by destroying the membrane integrity of P. digitatum, and the use of ClO2 may be an alternative strategy to control green mold in postharvest citrus fruits.


Asunto(s)
Citrus , Penicillium , Compuestos de Cloro , Frutas , Óxidos , Enfermedades de las Plantas
9.
J Am Soc Mass Spectrom ; 31(11): 2305-2312, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-32955262

RESUMEN

Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has become an important method to study the structural dynamics of proteins. However, glycoproteins represent a challenge to the traditional HDX-MS workflow for determining the deuterium uptake of the protein segments that contain the glycan. We have recently demonstrated the utility of the glycosidase PNGase A to enable HDX-MS analysis of N-glycosylated protein regions. Here, we have investigated the use of the acidic glycosidase PNGase H+, which has a pH optimum at 2.6, to efficiently deglycosylate N-linked glycosylated peptides during HDX-MS analysis of glycoproteins. Our results show that PNGase H+ retains high deglycosylation activity at HDX quench conditions. When used in an HDX-MS workflow, PNGase H+ allowed the extraction of HDX data from all five glycosylated regions of the serpin α1-antichymotrypsin. We demonstrate that PNGase A and PNGase H+ are capable of similar deglycosylation performance during HDX-MS analysis of α1-antichymotrypsin and the IgG1 antibody trastuzumab (TZ). However, PNGase H+ provides broader specificity and greater tolerance to the disulfide-bond reducing agent TCEP, while PNGase A offers advantages in terms of commercial availability and purity. Overall, our findings demonstrate the unique features of PNGase H+ for improving conformational analysis of glycoproteins by HDX-MS, in particular, challenging glycoproteins containing both glycosylations and disulfide bonds.


Asunto(s)
Amidohidrolasas/química , Glicoproteínas/análisis , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Animales , Glicosilación , Humanos , Ratones , Modelos Moleculares , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/química , Péptidos/análisis
10.
Artículo en Inglés | MEDLINE | ID: mdl-32719787

RESUMEN

Peptide-N 4-(N-acetyl-ß-glucosaminyl) asparagine amidases (PNGases, N-glycanases, EC 3.5.1.52) are indispensable tools in releasing N-glycans from glycoproteins. So far, only a limited number of PNGase candidates are available for the structural analysis of glycoproteins and their glycan moieties. Herein, a panel of 13 novel PNGase H+ candidates (the suffix H+ refers to the acidic pH optimum of these acidobacterial PNGases) was tested in their recombinant form for their deglycosylation performance. One candidate (originating from the bacterial species Dyella japonica) showed superior properties both in solution-phase and immobilized on amino-, epoxy- and nitrilotriacetate resins when compared to currently acidic available PNGases. The high expression yield compared to a previously described PNGase H+, broad substrate specificity, and good storage stability of this novel N-glycanase makes it a valuable tool for the analysis of protein glycosylation.

11.
J Proteome Res ; 18(3): 1114-1124, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576150

RESUMEN

N-Glycans are an important source of milk oligosaccharides. In addition to free oligosaccharides found in milk, N-glycans can also be utilized by gut microbes. A potential for milk N-glycans to act as gut microbe regulators in suckling animals has attracted considerable attention; however, sow milk N-glycans and their potential effects upon the piglet's gut microbes in vivo remain unknown. In the present study, we profiled the milk N-glycans of Meishan and Yorkshire sows during lactation using UPLC and a mass spectrometry-based glycome method, and we explored the correlations between milk N-glycans and offspring gut microbiota. Twenty-two N-glycan structures were identified in sow milk, among which 36% (8 out of 22) were fucosylated, 41% (9 out of 22) were sialylated, and 14% (3 out of 22) were high mannosylated. An N-glycan with a NeuGc structure (namely PNO20, GlcNAc4-Man3-Gal2-Fuc-Neu5Gc) was identified in sow milk for the first time. No compositional differences between the two breeds or between different lactation times were found in porcine milk N-linked oligosaccharides (PNOs); however, the abundances of different structures within this class did vary. The relative abundances of fucosylated PNO3 (GlcNAc4-Man3-Fuc) and sialylated PNO18 (GlcNAc4-Man3-Gal2-NeuAc) increased during lactation, and Meishan sows demonstrated a higher ( P < 0.05) abundance of mannosylated PNO10 (GlcNAc2-Man6) and sialylated PNO17 (GlcNAc5-Man3-Gal-NeuAc) than Yorkshire sows. Apparent correlations between milk N-glycans and offspring gut microbial populations were found; for example, mannosylated PNO21 (GlcNAc2-Man9) was positively correlated with OTU706 ( Lactobacillus amylovorus) and OTU1380 ( Bacteroides uniformis). Overall, our results indicate that the milk N-glycome of Meishan and Yorkshire sows differs in N-glycome characteristics and that this is correlated to abundances of certain piglet gut microbes. These findings provide a reference for future elucidation of the involvement of gut microbes in milk N-glycan metabolism, which is important to the health both of large domestic animals and humans.


Asunto(s)
Microbioma Gastrointestinal/genética , Glicosilación , Leche/química , Polisacáridos/genética , Animales , Femenino , Humanos , Lactancia/genética , Espectrometría de Masas , Leche/metabolismo , Leche/microbiología , Oligosacáridos/genética , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Embarazo , Porcinos
12.
J Vis Exp ; (136)2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29985337

RESUMEN

In recent years, the carbohydrate moieties of plants have received considerable attention, as they are a potential source of cross-reactive, allergy-provoking immune responses. In addition, carbohydrate structures also play a critical role in plant metabolism. Here, we present a simple and rapid method for preparing and analyzing N-glycans from different cultivars of radish (Raphanus sativus) using an N-glycanase specific for the release of plant-derived carbohydrate structures. To achieve this, crude trichloroacetic acid precipitates of radish homogenates were treated with PNGase H+, and labeled using 2-aminobenzamide as a fluorescent tag. The labeled N-glycan samples were subsequently analyzed by ultra performance liquid chromatography (UPLC) separation and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for a detailed structural evaluation and to quantify relative abundancies of the radish-derived N-glycan structures. This protocol can also be used for the analysis of N-glycans from various other plant species, and may be useful for further investigation of the function and effects of N-glycans on human health.


Asunto(s)
Cromatografía Liquida/métodos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/uso terapéutico , Polisacáridos/metabolismo , Raphanus/química , Humanos , Polisacáridos/análisis
13.
Food Chem ; 235: 167-174, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28554622

RESUMEN

Health differences between breast- and formula-fed infants have long been apparent despite great efforts in improving the function of baby formula by adjusting the levels of various milk nutritional components. However, the N-glycome, a type of oligosaccharide decorating a diverse range of proteins, has not been extensively studied in milk regarding its biological function. In this study, the anti-pathogenic function of the enzymatically released human and bovine milk N-glycome against 5 food-borne pathogens was investigated. The human milk N-glycome showed significantly higher activity than bovine milk. After enzymatic defucosylation of human and bovine N-glycan pool, UHPLC peak shifts were observed in both suggesting heavy fucosylation of samples. Furthermore, the anti-pathogenic activity of the defulosylated N-glycome decreased significantly, and the significance of functional difference between the two almost disappeared. This result indicates the essential role of fucosylation for the anti-pathogenic function of the milk N-glycome, especially in human milk.


Asunto(s)
Glicoproteínas/análisis , Leche Humana/química , Leche/química , Animales , Bovinos , Glicosilación , Humanos , Lactante , Alimentos Infantiles , Fórmulas Infantiles , Recién Nacido , Oligosacáridos , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...