Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Diabetol Metab Syndr ; 16(1): 193, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118153

RESUMEN

BACKGROUND: The triglyceride-glucose (TyG) index is linked to both the development and progression of diabetes, while obesity remains a significant risk factor for this disease. However, the relationship between the TyG index and overweight or obese diabetes remains unclear. METHODS: This study was a cross-sectional analysis of data from 40,633 participants with body mass index (BMI) ≥ 24 kg/m2 who were screened from January 2018 to December 2023 at Henan Provincial People's Hospital. Participants were divided into groups of overweight or obese individuals with diabetes and those without diabetes according to the diabetes diagnostic criteria. The TyG index, the dependent variable, was determined using the equation ln [fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. We explored the association between TyG index and diabetes in overweight or obese individuals through multivariate logistic regression, subgroup analysis, generalized additive models, smoothed curve fitting, and analysis of threshold effects. RESULTS: Patients who were overweight or obese and had diabetes had higher TyG index levels than those without diabetes. After adjusting for confounders, our findings indicated a significant association between the TyG index and the risk of diabetes in overweight or obese individuals [odds ratio (OR) = 7.38, 95% confidence interval (CI): 6.98-7.81]. There was a J-shaped nonlinear association between TyG index and diabetes. When TyG index was > 4.46, the risk of diabetes increased sharply. Notably, a high baseline TyG index (Q4 group) correlated with a notably greater risk of diabetes than did the Q1 group, with an OR of 22.72 (95% CI: 20.52-25.16). Subgroup analysis revealed that the association between TyG and diabetes was stronger in females than in males (OR = 7.57, 95% CI: 6.76-8.48,), more significant in individuals with a BMI of 24-28 kg/m2 than in those with a BMI ≥ 28 kg/m2 (OR = 8.40, 95% CI: 7.83-9.02), and increased with age (OR = 8.15, 95% CI: 7.25-9.17) (all P for interaction < 0.001). CONCLUSION: Among overweight or obese individuals, a higher TyG index is associated with an elevated risk of diabetes, especially when TyG is > 4.46. Furthermore, factors such as sex, age, and BMI significantly influence the risk of diabetes in overweight or obese individuals. Specifically, older women with a BMI of 24-28 kg/m2 are at a greater risk of diabetes under similar TyG index conditions.

2.
Adv Sci (Weinh) ; : e2406742, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120009

RESUMEN

Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.

3.
BMC Complement Med Ther ; 24(1): 277, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039498

RESUMEN

INTRODUCTION: Chronic inflammation is the major pathological feature of Atherosclerosis(As). Inflammation may accelerate plaque to develop, which is a key factor resulting in the thinning of the fibrous cap and the vulnerable rupture of plaque. Presently, clinical treatments are still lacking. It is necessary to find a safe and effective treatment for As inflammation. Simiaoyongan Decoction (SMYA) has potential anti-inflammatory and plaque protection effects. This protocol aims to evaluate the efficacy, safety, and mechanism of SMYA for patients with carotid atherosclerotic plaque. METHODS/DESIGN: The assessment of SMYA clinical trial is designed as a randomized, double-blind, placebo-controlled study. The sample size is 86 cases in total, with 43 participants in the intervention group and the control group respectively. The intervention group takes SMYA, while the control group takes SMYA placebo. The medication lasts for 14 days every 10 weeks, with a total of 50 weeks. We will use carotid artery high resolution magnetic resonance imaging (HR-MRI) to measure plaque. The plaque minimum fiber cap thickness (PMFCT) is adopted as the primary outcome. The secondary outcomes include plaque fiber cap volume, volume percentage of fiber cap, lipid-rich necrotic core (LRNC) volume, volume percentage of LRNC, internal bleeding volume of plaque, internal bleeding volume percentage of plaque, plaque calcification volume, volume percentage of plaque calcification, lumen stenosis rate, average and a maximum of vessel wall thickness, vessel wall volume, total vessel wall load, carotid atherosclerosis score, hs-CRP, IL-1ß and IL-6, the level of lipid profiles and blood glucose, blood pressure, and body weight. DISCUSSION: We anticipate that patients with As plaque will be improved from SMYA by inhibiting inflammation to enhance plaque stability. This study analyzes plaque by using HR-MRI to evaluate the clinical efficacy and safety of SMYA. Moreover, we conduct transcriptome analysis, proteomic analysis, and metagenomic analysis of blood and stool of participants to study the mechanism of SMYA against As plaque. This is the first prospective TCM trial to observe and treat As plaque by inhibiting inflammatory reaction directly. If successful, the finding will be valuable in the treatment of As plaque and drug development, especially in the "statin era". TRIAL REGISTRATION NUMBER: This trial is registered on Chinese Clinical Trials.gov with number ChiCTR2000039062 on October 15, 2020 ( http://www.chictr.org.cn ).


Asunto(s)
Medicamentos Herbarios Chinos , Placa Aterosclerótica , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Método Doble Ciego , Placa Aterosclerótica/tratamiento farmacológico , Enfermedades de las Arterias Carótidas/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Femenino , Adulto , Anciano
4.
J Hypertens ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920061

RESUMEN

BACKGROUND: Hypertension development is predominantly influenced by inflammation, excessive fat deposition, and metabolic irregularities. Among these factors, liver fat accumulation is a critical metabolic disorder. However, the quantification of liver fat levels and its associated risk for hypertension incidence remain ambiguous. This project is designed to explore the association between liver fat levels and the risk of hypertension in a healthy population. METHODS: This cross-sectional study involved 4955 participants from the Health Management Center at Henan Provincial People's Hospital who were surveyed between February 2020 and February 2023. Participants were categorized into four groups based on liver fat quartiles. Subgroup analyses, restricted cubic spline regression models, and logistic regression were utilized to assess the association between liver fat levels and hypertension risk. The relationships between liver fat levels and inflammatory markers were examined using multiple linear regression models. Additionally, a mediation analysis was conducted to explore the role of inflammatory factors in the relationship between liver fat and hypertension risk. RESULTS: Participants with hypertension exhibited greater liver fat levels than did those without hypertension. An increased risk of hypertension was associated with elevated liver fat levels, even after adjusting for other covariates [Q4 vs. Q1 in model II: odds ratio (OR = 1.28), 95% confidence interval (CI) = 1.04-1.59, P = 0.022; P for trend = 0.039]. A nonlinear relationship was observed between liver fat level and hypertension risk, with a notable increase in hypertension risk occurring at liver fat levels greater than 8.65%. Additionally, a positive correlation was found between inflammatory markers and liver fat levels. A mediation effect of 4.76% was noted, linking hypertension risk and liver fat levels through neutrophils. CONCLUSION: Liver fat levels exceeding 8.65% significantly elevated the risk of hypertension. Inflammatory factors serve as crucial mediators of the relationship between liver fat and hypertension.

5.
Adv Mater ; 36(30): e2402968, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38706203

RESUMEN

Efferocytosis-mediated inflammatory reversal plays a crucial role in bone repairing process. However, in refractory bone defects, the macrophage continual efferocytosis may be suppressed due to the disrupted microenvironment homeostasis, particularly the loss of apoptotic signals and overactivation of intracellular oxidative stress. In this study, a polydopamine-coated short fiber matrix containing biomimetic "apoptotic signals" to reconstruct the microenvironment and reactivate macrophage continual efferocytosis for inflammatory reversal and bone defect repair is presented. The "apoptotic signals" (AM/CeO2) are prepared using CeO2 nanoenzymes with apoptotic neutrophil membrane coating for macrophage recognition and oxidative stress regulation. Additionally, a short fiber "biomimetic matrix" is utilized for loading AM/CeO2 signals via abundant adhesion sites involving π-π stacking and hydrogen bonding interactions. Ultimately, the implantable apoptosis-mimetic nanoenzyme/short-fiber matrixes (PFS@AM/CeO2), integrating apoptotic signals and biomimetic matrixes, are constructed to facilitate inflammatory reversal and reestablish the pro-efferocytosis microenvironment. In vitro and in vivo data indicate that the microenvironment biomimetic short fibers can activate macrophage continual efferocytosis, leading to the suppression of overactivated inflammation. The enhanced repair of rat femoral defect further demonstrates the osteogenic potential of the pro-efferocytosis strategy. It is believed that the regulation of macrophage efferocytosis through microenvironment biomimetic materials can provide a new perspective for tissue repair.


Asunto(s)
Apoptosis , Materiales Biomiméticos , Cerio , Inflamación , Macrófagos , Polímeros , Animales , Cerio/química , Cerio/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Inflamación/tratamiento farmacológico , Ratas , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , Apoptosis/efectos de los fármacos , Indoles/química , Indoles/farmacología , Fagocitosis/efectos de los fármacos , Células RAW 264.7 , Regeneración Ósea/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Biomimética/métodos , Osteogénesis/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Eferocitosis
6.
Molecules ; 29(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38792025

RESUMEN

Two-stage reverse osmosis (RO) processes with intermediate concentrate demineralization (ICD) provide an efficient strategy to treat brines with high CaSO4 contents and reduce concentrate discharge. In this paper, an SRO concentrate is treated using ICD to remove CaSO4 and then mixed with a PRO concentrate for further desalination in SRO, thereby reducing the discharge of the concentrate. We investigate the selection and degradation of scale inhibitors, as well as seeded precipitation in the two-stage RO process with ICD, to achieve a high water recovery rate. A scale inhibitor is added to restrain CaSO4 crystallization on the membrane surface, and the optimized scale inhibitor, RO-400, is found to inhibit calcium sulfate scaling effectively across a wide range of the saturation index of gypsum (SIg) from 2.3 to 6. Under the optimized parameters of 40 W UV light and 70 mg/L H2O2, UV/H2O2 can degrade RO-400 completely in 15 min to destroy the scale inhibitor in the SRO concentrate. After scale inhibitor degradation, the SRO concentrate is desaturated by seeded precipitation, and the reaction degree of CaSO4 reaches 97.12%, leading to a concentrate with a low SIg (1.07) for cyclic desalination. Three UVD-GSP cycle tests show that the reused gypsum seeds can also ensure the effect of the CaSO4 precipitation process. This paper provides a combined UVD-GSP strategy in two-stage RO processes to improve the water recovery rate for CaSO4-contained concentrate.

7.
Adv Sci (Weinh) ; 11(19): e2400345, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477444

RESUMEN

Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.


Asunto(s)
Microesferas , Osteoartritis , Animales , Porcinos , Osteoartritis/patología , Osteoartritis/metabolismo , Senescencia Celular/fisiología , Senescencia Celular/efectos de los fármacos , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Apoptosis , Hidrogeles , Cartílago Articular/metabolismo , Cartílago/metabolismo , Ácido Hialurónico/metabolismo , Eferocitosis
8.
Lipids Health Dis ; 23(1): 27, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267987

RESUMEN

BACKGROUND: The association between lipid and bone metabolism, particularly the role of high-density lipoprotein cholesterol (HDL-C) in regulating bone mineral density (BMD), is of significant interest. Despite numerous studies, findings on this relationship remain inconclusive, especially since evidence from large, sexually diverse Chinese populations is sparse. This study, therefore, investigates the correlation between HDL-C and lumbar BMD in people of different genders using extensive population-based data from physical examinations conducted in China. METHODS: Data from a cross-sectional survey involving 20,351 individuals aged > = 20 years drawn from medical records of health check-ups at the Health Management Centre of the Henan Provincial People's Hospital formed the basis of this study. The primary objective was to determine the correlation between HDL-C levels and lumbar BMD across genders. The analysis methodology included demographic data analysis, one-way ANOVA, subgroup analyses, multifactorial regression equations, smoothed curve fitting, and threshold and saturation effect analyses. RESULTS: Multifactorial regression analysis revealed a significant inverse relationship between HDL-C levels and lumbar BMD in both sexes, controlling for potential confounders (Male: ß = -8.77, 95% CI -11.65 to -5.88, P < 0.001; Female: ß = -4.77, 95% CI -8.63 to -0.90, P = 0.015). Subgroup and threshold saturation effect analyses indicated a stronger association in males, showing that increased HDL-C correlates with reduced lumbar BMD irrespective of age and body mass index (BMI). The most significant effect was observed in males with BMI > 28 kg/m2 and HDL-C > 1.45 mmol/L and in females with a BMI between 24 and 28 kg/m2. CONCLUSION: Elevated HDL-C is associated with decreased bone mass, particularly in obese males. These findings indicate that individuals with high HDL-C levels should receive careful clinical monitoring to mitigate osteoporosis risk. TRIAL REGISTRATION: The research protocol received ethics approval from the Ethics Committee at Beijing Jishuitan Hospital, in conformity with the Declaration of Helsinki guidelines (No. 2015-12-02). These data are a contribution of the China Health Quantitative CT Big Data Research team, registered at clinicaltrials.gov (code: NCT03699228).


Asunto(s)
Densidad Ósea , HDL-Colesterol , Pueblos del Este de Asia , Femenino , Humanos , Masculino , China , HDL-Colesterol/sangre , Estudios Transversales
9.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297033

RESUMEN

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Asunto(s)
Antimaláricos , Aspartato-ARNt Ligasa , Animales , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-ARNt Ligasa/genética , Aminoacil-ARN de Transferencia/metabolismo , Antimaláricos/farmacología , Mamíferos/genética
10.
Adv Mater ; 36(3): e2310492, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997010

RESUMEN

Uric acid metabolism disorder triggers metabolic diseases, especially gout. However, increasing uric acid excretion remains a challenge. Here, an accelerative uric acid excretion pathway via an oral intestine-explosive hydrogel microsphere merely containing uricase and dopamine is reported. After oral administration, uricase is exposed and immobilized on intestinal mucosa along with an in situ dopamine polymerization via a cascade reaction triggered by the intestinal specific environment. By this means, trace amount of uricase is required to in situ up-regulate uric acid transporter proteins of intestinal epithelial cells, causing accelerated intestinal uric acid excretion. From in vitro data, the uric acid in fecal samples from gout patients could be significantly reduced by up to 37% by the mimic mucosa-immobilized uricase on the isolated porcine tissues. Both hyperuricemia and acute gouty arthritis in vivo mouse models confirm the uric acid excretion efficacy of intestine-explosive hydrogel microspheres. Fecal uric acid excretion is increased around 30% and blood uric acid is reduced more than 70%. In addition, 16S ribosomal RNA sequencing showed that the microspheres optimized intestinal flora composition as well. In conclusion, a unique pathway via the intestine in situ regulation to realize an efficient uric acid intestinal excretion for gout therapy is developed.


Asunto(s)
Gota , Ácido Úrico , Humanos , Ratones , Porcinos , Animales , Ácido Úrico/metabolismo , Microesferas , Dopamina , Urato Oxidasa , Hidrogeles , Gota/tratamiento farmacológico , Gota/genética , Intestinos
11.
Chin Med ; 18(1): 152, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986011

RESUMEN

BACKGROUND: Traditional Chinese patent medicines (TCPMs) have been widely used to treat carotid atherosclerotic plaque (CAP) in China. However, systematic evaluation of the clinical efficacy of TCPMs for CAP is still unknown, and the comparative efficacy of different TCPMs is unclear. OBJECTIVES: This study aims to compare and rank the effectiveness and safety of different TCPMs in treating CAP using a Bayesian network meta- analysis (NMA). METHODS: This NMA was performed according to the Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) Extension Statement. Eight databases were searched from their inception to August 2023 for randomized controlled trials (RCTs). The articles regarding eligibility and extracted data were screened independently by two authors. The Cochrane Risk of Bias tool was used to evaluate quality and bias. The change of carotid artery intimal- medial thickness (IMT), carotid maximal plaque area, carotid atherosclerotic plaque Course score, serum lipid levels, CRP, and adverse events rate (AER) were used as outcomes. Data from each RCTs were first pooled using random- effect pairwise meta- analyses and illustrated as odds ratios (ORs) or standardized mean differences (SMDs) with 95% confidence interval (CI). NMAs were performed using Stata17.0 software and the GeMTC package of R software to evaluate the comparative effectiveness of TCPMs, and displayed as ORs or SMDs with 95% CI. A Bayesian hierarchical random- effects model was used to conduct NMAs using the Markov Chain Monte Carlo algorithm. The GRADE partially contextualised framework was applied for NMA result interpretation. RESULTS: NMA included 27 RCT trials with 4131 patients and nine types of TCPMs. Pairwise meta- analyses indicated that Conventional Western medicine (CWM) + TCPM was superior to CWM in reducing the IMT (SMD: - 1.26; 95% CI - 1.59 to - 0.93), the carotid maximal plaque area (SMD - 1.27; 95% CI - 1.71, - 0.82) and the carotid atherosclerotic plaque Course score (SMD - 0.72; 95% CI 95% CI - 1.20, - 0.25). NMAs demonstrated that CWM + Jiangzhiling pill (JZL) with SUCRA 70.6% exhibited the highest effective intervention for reducing IMT. CWM + SXBX (Shexiang baoxin pill) was superior to other TCPMs in reducing the carotid maximal plaque area (83.0%), the atherosclerotic plaque Course score (92.5%), TC (95.6%) and LDL (92.6%) levels. CWM + NXT (Naoxintong capsule), CWM + XS (Xiaoshuang granules/enteric capsule), and CWM + ZBT (Zhibitai) were superior to other CPMs in improving TG (90.1%), HDL (86.1%), and CRP (92.6%), respectively. No serious adverse events were reported. CONCLUSIONS: For CAP patients, CWM + XSBX was among the most effective in reducing carotid maximal plaque area, atherosclerotic plaque Course score, TC and LDL levels, and CWM + JZL was the most effective in reducing IMT. Overall, CWM + XSBX may be considered an effective intervention for the treatment of CAP. This study provides reference and evidence for the clinical optimization of TCPM selection in CAP treatment. More adequately powered, well- designed clinical trials to increase the quality of the available evidence are still needed in the future due to several limitations.

12.
Small Methods ; 7(11): e2300681, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37670530

RESUMEN

Intraperitoneal sporadic tumor is a common and complicated syndrome in cancers, causing a high rate of death, and people find that intraperitoneal chemotherapy (IPC) can treat intraperitoneal sporadic tumors better than intravenous chemotherapy and surgery. However, the effectiveness and side effects of IPC are controversial, and the operation process of IPC is complicated. Herein, the injectable paclitaxel-loaded (PTX-loaded) electrospun short fibers are constructed through a series process of electrospinning, homogenizing, crosslinking, and subsequent polydopamine coating and folate acid (FA) modification. The evenly dispersed short fibers exhibited effective tumor cell killing and good injectable ability, which is convenient to use and greatly improved the complex operation procedure. Mussel-like protein poly-dopamine coating and FA modification endowed short fibers with the ability of targeted adhesion to tumors, and therefore the short fibers further acted as a kind of micro membrane that could release drugs to tumors at close range, maintaining local high drug concentration and prevent paclitaxel killing normal tissues. Thus, the target-adhesive injectable electrospun short fibers are expected to be the potential candidate for cancer treatment, especially the intraperitoneal sporadic tumors, which are hard to treat by surgery or intravenous chemotherapy.


Asunto(s)
Adventicia , Neoplasias , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Proteínas , Perfusión
13.
Adv Mater ; 35(48): e2302801, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37589156

RESUMEN

The lesion core is the area with the most serious injury and vigorous repair. Existing nanocarriers are difficult to break through the targeted delivery to the lesion core for precise treatment in the intracellular and extracellular microenvironment. Herein, a cellular membrane-engineered nanovesicle (CMEV) with a hierarchical structure is constructed using the double emulsion-extrusion method by integrating a neutrophil membrane, functional antibody, and gelled drug-loaded core as a three-stage booster to target the lesion core and deliver catestatin (CST), a small therapeutic peptide, for ischemic cardiomyopathy therapy. By coating the neutrophil membrane outside the shell, CMEV is endowed with the function of neutrophil-like migration to achieve the first stage of tissue targeting. Based on the specific anchoring to injured myocardium, a myosin light chain 3 (MLC3) antibody is embedded to fulfill the second stage of CMEV accumulation in the lesion core. The gelled core containing CST-sodium alginate (NaAlg) with a pH-responsive shell is prepared by ionic cross-linking to accomplish the third stage of precise CST administration. Triggered by the microenvironment, NaAlg electrostatically adheres to the lesion core for sustained release, enhancing the efficacy of CST in improving cardiomyocyte apoptosis, excessive fibrosis, macrophage polarization, and angiogenesis. Thus, the "three-stage booster" nanovesicle significantly ameliorates cardiac function and adverse remodeling to treat ischemic cardiomyopathy.


Asunto(s)
Apoptosis , Cardiomiopatías , Humanos , Membrana Celular , Péptidos
14.
Res Sq ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546892

RESUMEN

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

15.
Small ; 19(45): e2303456, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37438648

RESUMEN

The pathogenesis of postmenopausal osteoporosis (PMOP) is mainly determined by the adhesion of osteoclasts to the bone matrix and the involvement of various molecules in bone resorption. The dual regulation strategy of the physical barriers of bone matrix and intracellular gene regulation generated by advanced biomaterials is a decent alternative for the treatment of PMOP. Herein, for the first time, it is identified that hsa-miR-378i/mmu-miR-378a-3p are closely associated with PMOP. Then, an osteophilic and dual-regulated alendronate-gene lipoplex (antagomir@Aln-Lipo), composed of medicative alendronate-functionalized liposomal vehicle and encapsulated specific microRNAs is engineered, for bone-targeting delivery of genes to achieve combined mitigation of bone loss. Alendronate targets hydroxyapatite in the bone matrix and occupies the adhesion site of osteoclasts, thus providing the "physical barriers". Antagomir is coupled precisely to specific endogenous microRNAs, thus providing the "genetic signals". These functionalized lipoplexes exhibited long-term stability and good transfection efficiency. It is proven that antagomir@Aln-Lipo could synergistically regulate osteoclastogenesis and bone resorption in vitro and in vivo. Furthermore, intravenous injection of antagomir@Aln-Lipo efficiently reverses bone loss through a dual mechanism driven by alendronate and antagomir-378a-3p. In conclusion, the osteophilic and dual-regulated antagomir@Aln-Lipo offers a brand-new bifunctional strategy for the precise treatment of PMOP.


Asunto(s)
Resorción Ósea , MicroARNs , Humanos , Alendronato , Antagomirs , Huesos/patología , MicroARNs/genética
16.
Research (Wash D C) ; 6: 0131, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223475

RESUMEN

There are still challenges in applying drug nanocarriers for in situ sustained macrophage targeting and regulation, due to the rapid clearance of nanocarriers and burst drug release in vivo. Herein, a nanomicelle-hydrogel microsphere, characterized by its macrophage-targeted nanosized secondary structure that allows it to accurately bind to M1 macrophages through active endocytosis, is employed for in situ sustained macrophage targeting and regulation, and addresses the insufficient osteoarthritis therapeutic efficacy caused by rapid clearance of drug nanocarriers. The 3-dimensional structure of a microsphere can prevent the rapid escape and clearance of a nanomicelle, thus keeping it in joints, while the ligand-guided secondary structure can carry drugs to accurately target and enter M1 macrophages, and release drugs via the transition from hydrophobicity to hydrophilicity of nanomicelles under inflammatory stimulation inside the macrophages. The experiments show that the nanomicelle-hydrogel microsphere can in situ sustainably target and regulate M1 macrophages for more than 14 days in joints, and attenuate local "cytokine storm" by continuous M1 macrophage apoptosis promotion and polarization inhibition. This micro/nano-hydrogel system shows excellent ability to sustainably target and regulate macrophage, realizes the improvement of drug utilization and efficacy inside the macrophage, and thereby can be a potential platform for treating macrophage-related diseases.

17.
Drug Resist Updat ; 69: 100976, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37210811

RESUMEN

Acylphosphatase 1 (ACYP1), a protein located in the mammalian cell cytoplasm, has been shown to be associated with tumor initiation and progression by functioning as a metabolism-related gene. Here we explored the potential mechanisms by which ACYP1 regulates the development of HCC and participates in the resistance to lenvatinib. ACYP1 can promote the proliferation, invasion, and migration capacities of HCC cells in vitro and in vivo. RNA sequencing reveals that ACYP1 markedly enhances the expression of genes related to aerobic glycolysis, and LDHA is identified as the downstream gene of ACYP1. Overexpression of ACYP1 upregulates LDHA levels, which then increases the malignancy potential of HCC cells. GSEA data analysis reveals the enrichment of differentially expressed genes in the MYC pathway, indicating a positive correlation between MYC and ACYP1 levels. Mechanistically, ACYP1 exerts its tumor-promoting roles by regulating the Warburg effect through activating the MYC/LDHA axis. Mass spectrometry analysis and Co-IP assays confirm that ACYP1 can bind to HSP90. The regulation of c-Myc protein expression and stability by ACYP1 is HSP90 dependent. Importantly, lenvatinib resistance is associated with ACYP1, and targeting ACYP1 remarkably decreases lenvatinib resistance and inhibits progression of HCC tumors with high ACYP1 expression when combined with lenvatinib in vitro and in vivo. These results illustrate that ACYP1 has a direct regulatory role in glycolysis and drives lenvatinib resistance and HCC progression via the ACYP1/HSP90/MYC/LDHA axis. Targeting ACYP1 could synergize with lenvatinib to treat HCC more effectively.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Glucólisis/genética , Regulación Neoplásica de la Expresión Génica , Mamíferos
18.
19.
Molecules ; 28(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36903274

RESUMEN

Novel polymers applied in economic membrane technologies are a perennial hot topic in the fields of natural gas purification and O2 enrichment. Herein, novel hypercrosslinked polymers (HCPs) incorporating 6FDA-based polyimide (PI) MMMs were prepared via a casting method for enhancing transport of different gases (CO2, CH4, O2, and N2). Intact HCPs/PI MMMs could be obtained due to good compatibility between the HCPs and PI. Pure gas permeation experiments showed that compared with pure PI film, the addition of HCPs effectively promotes gas transport, increases gas permeability, and maintains ideal selectivity. The permeabilities of HCPs/PI MMMs toward CO2 and O2 were as high as 105.85 Barrer and 24.03 Barrer, respectively, and the ideal selectivities of CO2/CH4 and O2/N2 were 15.67 and 3.00, respectively. Molecular simulations further verified that adding HCPs was beneficial to gas transport. Thus, HCPs have potential utility in fabrication of MMMs for facilitating gas transport in the fields of natural gas purification and O2 enrichment.

20.
Adv Sci (Weinh) ; 10(15): e2207381, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36967561

RESUMEN

Postmenopausal osteoporosis is one of the most prevalent skeletal disorders in women and is featured by the imbalance between intraosseous vascularization and bone metabolism. In this study, a pH-responsive shell-core structured micro/nano-hydrogel microspheres loaded with polyhedral oligomeric silsesquioxane (POSS) using gas microfluidics and ionic cross-linking technology are developed. This micro/nano-hydrogel microsphere system (PDAP@Alg/Cs) can achieve oral delivery, intragastric protection, intestinal slow/controlled release, active targeting to bone tissue, and thus negatively affecting intraosseous angiogenesis and osteoclastogenesis. According to biodistribution data, PDAP@Alg/Cs can successfully enhance drug intestinal absorption and bioavailability through intestine adhesion and bone targeting after oral administration. In vitro and in vivo experiments reveal that PDAP@Alg/Cs promoted type H vessel formation and inhibited bone resorption, effectively mitigating bone loss by activating HIF-1α/VEGF signaling pathway and promoting heme oxygenase-1 (HO-1) expression. In conclusion, this novel oral micro/nano-hydrogel microsphere system can simultaneously accelerate intraosseous vascularization and decrease bone resorption, offering a brand-new approach to prevent postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis Posmenopáusica , Femenino , Humanos , Hidrogeles , Microesferas , Distribución Tisular , Huesos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA