Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1622-1628, 2022 Jun.
Artículo en Chino | MEDLINE | ID: mdl-35729141

RESUMEN

Subtropical region of China is one of the global hotspots receiving nitrogen deposition. Nitrogen deposition could affect the abundance and community structure of ammonia oxidizers including ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and complete ammonia oxidizer (comammox Nitrospira), with consequences on soil nutrient cycling that are driven by microorganisms. There is limited understanding for the newly discovered comammox Nitrospira in the subtropical forest soils. Here, we investigated the effect of simulated N deposition on abundances of soil ammonia oxidizers in the Castanopsis fargesii Nature Reserve in Xinkou Town, Sanming City, Fujian Province, China. Soil samples were collected from the field plots which received long-term nitrogen deposition with different dosages, including: CK, no additional treatment; LN, low nitrogen deposition treatment, dosage of 40 kg N·hm-2·a-1; and HN, high nitrogen deposition treatment, dosage of 80 kg N·hm-2·a-1. After 8-year treatment, simulated N deposition decreased soil pH and organic matter content, and increased nitrate content. We failed to amplify the amoA gene of AOB in the tested soils. High nitrogen deposition increased the abundance of AOA, but did not affect the abundance of comammox Nitrospira clade A and clade B. The ratio of comammox Nitrospira to AOA decreased with N addition, indicating that N addition weakened the role of comammox Nitrospira in nitrification in the subtropical forest soils. However, there were strong non-specific amplifications for both comammox Nitrospira clades A and B, highlighting the demand for the development of high coverage and specificity primers for comammox Nitrospira investigations in the future. The abundance of comammox Nitrospira clade A was positively correlated with total nitrogen (TN) and NH4+ concentration, while that of clade B was positively associated with soil organic carbon (SOC), TN and NH4+ Concentration. Overall, our findings demonstrated that simulated N deposition increased the relative importance of AOA in nitrification in the natural Castanopsis carlesii forest soil. These findings could provide theoretical support in coping with global change and N deposition in these regions.


Asunto(s)
Amoníaco , Suelo , Archaea/genética , Bacterias/genética , Carbono , Bosques , Nitrificación , Nitrógeno , Oxidación-Reducción , Filogenia , Suelo/química , Microbiología del Suelo
2.
Huan Jing Ke Xue ; 43(3): 1414-1423, 2022 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-35258205

RESUMEN

To explore the bacterioplankton community structure in the Yangtze River basin, water samples were collected from 177 sampling sites, including the source to the estuary along the mainstream of the Yangtze River, eight primary tributaries, and several lakes and reservoirs. The 16S rRNA genes were used to explore the bacterioplankton communities based on single molecule real-time sequencing, with the aim to study the diversity and community characteristics in a border sampling area and higher species annotation accuracy. Based on α-diversity analysis, the river area had higher species richness than that of the lake/reservoir area, resulting in these two areas having different bacterioplankton community diversities. Based on the ß diversity analysis, the bacterioplankton showed different community compositions between the river and lake/reservoir areas; temperature was the key environmental factor for the river area, and pH was the key environmental factor for the lake/reservoir area. In order to study the influence of different bacterioplankton communities, this study further investigated the species, function, and community differences between the river and lake/reservoir areas. The results were as follows:for the river area, the eutrophication level gradually increased from west to east along the mainstream of the Yangtze River, resulting in a gradually increased relative abundance of specific species. The lake/reservoir area had a higher risk of cyanobacteria bloom, and the opportunistic pathogen had a high relative abundance in the Danjiangkou Reservoir, indicating a higher ecological risk. For species composition, the river and lake/reservoir areas shared most OTUs (84%); however, some uncultured bacteria showed a high relative abundance in the Yangtze River, meaning the bacterioplankton of the Yangtze River basin still requires further study. In general, the river and lake/reservoir shared most species; however, the different bacterioplankton diversity, community composition, and enriched species made the river and lake/reservoir have different key environmental factors, and they also showed differences in ecological functions.


Asunto(s)
Cianobacterias , Lagos , Organismos Acuáticos , China , Ecosistema , Lagos/microbiología , ARN Ribosómico 16S/genética , Ríos/microbiología
3.
Ying Yong Sheng Tai Xue Bao ; 32(6): 2209-2216, 2021 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34212627

RESUMEN

The abundance of denitrifying functional genes plays a key role in driving the soil nitrous oxide (N2O) emission potential. Nitrite reductase genes (nirK and nirS) and nitrous oxide reductase genes (nosZ I and nosZ II) are the dominant denitrifying funtional genes. In this study, real-time quantitative PCR was conducted to evaluate the effects of 32-year imbalanced fertilization and lime and gypsum additions on the abundances of nirK, nirS, nosZ I and nosZ II genes in an Ultisol at Yingtan, Jiangxi Province. We further explored the underlying driving factors. The results showed that, compared with the balanced fertilization treatment, fertilization without phosphorus (P) signifi-cantly decreased the abundances of nirK, nirS, nosZ I and nosZ II genes. Fertilization without nitrogen (N) significantly reduced the abundances of nirK, nosZ I and nosZ II, but did not affect the abundance of nirS. Fertilization without potassium (K) did not affect the abundances of all denitri-fying functional genes. Results of stepwise regression analysis and random forest analysis showed that soil pH was a key environmental factor affecting the abundances of nosZ I and nosZ II. The application of lime or lime + gypsum significantly increased soil pH, which subsequently increased the abundances of nosZ II and nosZ II/nosZ I by 150%-231% and 127%-155%, respectively. Our results suggested that application of lime or lime + gypsum favored nosZ II more than nosZ I in upland Ultisols, which might enhance the relative importance of nosZ II in N2O reduction. Overall, fertilization without P would reduce denitrifying gene abundances, while the application of lime or lime + gypsum enriched nosZ II and increased ratio of nosZ II/nosZ I, which might be beneficial for reducing N2O emission potential in the Ultisols.


Asunto(s)
Sulfato de Calcio , Microbiología del Suelo , Compuestos de Calcio , China , Desnitrificación , Fertilización , Óxido Nitroso/análisis , Óxidos , Suelo
4.
Ying Yong Sheng Tai Xue Bao ; 31(11): 3729-3736, 2020 Nov.
Artículo en Chino | MEDLINE | ID: mdl-33300723

RESUMEN

Fertilization affects soil nitrogen cycling and nitrous oxide (N2O) emissions, which are mainly driven by microbes. A 32-year field experiment was conducted to investigate the effects of chemical fertilizers and their combination with organic materials on the abundance of denitrifying functional genes (nirS, nirK, nosZ I and nosZ II) in Ultisol. The treatments comprised no fertilizer (CK), chemical fertilizer, chemical fertilizer+peanut straw, chemical fertilizer+rice straw, chemical fertilizer+radish and chemical fertilizer+pig manure. Compared with the single chemical fertilizer treatment, soil pH and organic carbon content increased in the chemical fertilizer plus organic material treatments, with chemical fertilizer+pig manure having the strongest effect. Long-term fertilization did not affect the abundance of nirK gene, but significantly altered the nirS gene abundance. Compared to CK, long-term chemical fertilizer application increased the abundance of nirS gene by 426%. However, partial replacement of chemical fertilizer by organic materials decreased the abundance of nirS gene. The abundance of nosZ I gene was one order of magnitude higher than that of nosZ II, indicating the domination of nosZ I in the acidic Ultisol. Long-term fertilization did not affect the abundance of nosZ II, whereas chemical fertilizer+pig manure increased the abundance of nosZ I by 138%. Results of stepwise regression analysis showed that available phosphorus content was the primary factor regulating the abundance of nosZ I gene, whereas the abundance of the nosZ II gene was mainly regulated by nitrate content. Moreover, the lowest (nirS+nirK)/(nosZ I+nosZ II) value in the chemical fertilizer+pig manure treatment indicated that long-term manure application might reduce N2O emission potential in Ultisols.


Asunto(s)
Fertilizantes , Microbiología del Suelo , Animales , Fertilización , Fertilizantes/análisis , Estiércol , Suelo , Porcinos
5.
J Thorac Oncol ; 15(5): 816-826, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32036071

RESUMEN

INTRODUCTION: Programmed death receptor-1 (PD-1) inhibitors have shown efficacy in first-line treatment of NSCLC; however, evidence of PD-1 inhibitor as neoadjuvant treatment is limited. This is a phase 1b study to evaluate the safety and outcome of PD-1 inhibitor in neoadjuvant setting. METHODS: Treatment-naive patients with resectable NSCLC (stage IA-IIIB) received two cycles of sintilimab (200 mg, intravenously, day 1 out of 22). Operation was performed between day 29 and 43. Positron emission tomography-computed tomography scans were obtained at baseline and before the operation. The primary end point was safety. Efficacy end points included rate of major pathologic response (MPR) and objective response rate. Expression of programmed cell death ligand 1 was also evaluated (registration number: ChiCTR-OIC-17013726). RESULTS: A total of 40 patients enrolled, all of whom received two doses of sintilimab and 37 underwent radical resection. A total of 21 patients (52.5%) experienced neoadjuvant treatment-related adverse events (TRAEs). Four patients (10.0%) experienced grade 3 or higher neoadjuvant TRAEs, and one patient had grade 5 TRAE. Eight patients achieved radiological partial response, resulting in an objective response rate of 20.0%. Among 37 patients, 15 (40.5%) achieved MPR, including six (16.2%) with a pathologic complete response in primary tumor and three (8.1%) in lymph nodes as well. Squamous cell NSCLC exhibited superior response compared with adenocarcinoma (MPR: 48.4% versus 0%). Decrease of maximum standardized uptake values after sintilimab treatment correlated with pathologic remission (p < 0.00001). Baseline programmed cell death ligand 1 expression of stromal cells instead of tumor cells was correlated with pathologic regression (p = 0.0471). CONCLUSIONS: Neoadjuvant sintilimab was tolerable for patients with NSCLC, and 40.5% MPR rate is encouraging. The decrease of maximum standardized uptake values after sintilimab might predict pathologic response.


Asunto(s)
Neoplasias Pulmonares , Terapia Neoadyuvante , Anticuerpos Monoclonales Humanizados/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico
6.
ACS Appl Mater Interfaces ; 10(48): 41699-41706, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30406993

RESUMEN

Despite recent advances in the stimuli-responsive composites for oil storage and smart lubrication, achieving the high oil storage and recyclable smart-lubrication remains a challenge. Herein, a novel cobweb-like structural system consisting of oil warehouse and transportation system was designed and prepared and it shows high capacity of oil storage and recyclable smart-lubrication. Hollow SiO2 microspheres grated of KH550 and porous polyimide (PPI) were used as oil warehouse and pipeline, respectively, to build the smart system. Because of the novel structure, the composites can keep both high oil-content and oil-retention. Applying stimuli on materials resulted in lubricants releasing on the contact surface which can reduce the friction and wear during sliding. However, removing stimuli, the capillary force induced the sucking back of lubricant into the interior of composites through interconnected small pores of PPI. On the basis of high oil storage and stimuli-responsive performance, the composites can be used for recyclable smart-lubrication. The composites showed remarkable lubricating properties (coefficient of friction 0.056 and Ws 3.55 × 10-7 mm3 N-1 m-1) when the content of KHSM (hollow silica microspheres grated of KH550 (3-Aminopropyltriethoxysilane)) was 1.5 wt % by subjecting it to macroscopic pin-on-disc friction tests. Therefore, cobweb-like structural composites with oil warehouse and transportation system hold the promise for formulating of high oil storage and recyclable smart-lubrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA