Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 59(7): 3864-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25870069

RESUMEN

Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations.


Asunto(s)
Aminoquinolinas/farmacocinética , Antimaláricos/farmacocinética , Citocromo P-450 CYP2D6/genética , Aminoquinolinas/sangre , Animales , Antimaláricos/sangre , Área Bajo la Curva , Biotransformación , Citocromo P-450 CYP2D6/metabolismo , Semivida , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Primaquina/farmacocinética
2.
Antimicrob Agents Chemother ; 59(4): 2380-7, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645856

RESUMEN

Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity.


Asunto(s)
Antimaláricos/farmacocinética , Citocromo P-450 CYP2D6/metabolismo , Primaquina/farmacocinética , Animales , Área Bajo la Curva , Biotransformación , Citocromo P-450 CYP2D6/genética , Semivida , Humanos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
J Med Chem ; 51(17): 5198-220, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18698758

RESUMEN

Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed "chemical zip codes", are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these "chemical zip codes". It is postulated that after binding to protein kinase C (PKC) isozymes or other nonkinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCalpha to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses.


Asunto(s)
Diglicéridos/química , Lactonas/química , Proteína Quinasa C-alfa/metabolismo , Sitios de Unión , Fenómenos Químicos , Química , Técnicas Químicas Combinatorias , Diglicéridos/metabolismo , Diglicéridos/farmacología , Humanos , Lactonas/metabolismo , Lactonas/farmacología , Conformación Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
4.
J Biol Chem ; 280(29): 27329-38, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-15923197

RESUMEN

Although multiple natural products are potent ligands for the diacylglycerol binding C1 domain of protein kinase C (PKC), RasGRP, and related targets, the high conservation of C1 domains has impeded the development of selective ligands. We characterized here a diacylglycerol-lactone, 130C037, emerging from a combinatorial chemical synthetic strategy, which showed substantial selectivity. 130C037 gave shallow binding curves for PKC isoforms alpha, beta, gamma, delta, and epsilon, with apparent Ki values ranging from 340 nm for PKCalpha to 29 nm for PKCepsilon. When binding to isolated C1 domains of PKCalpha and -delta, 130C037 showed good affinity (Ki= 1.78 nm) only for deltaC1b, whereas phorbol 12,13-dibutyrate showed affinities within 10-fold for all. In LNCaP cells, 130C037 likewise selectively induced membrane translocation of deltaC1b. 130C037 bound intact RasGRP1 and RasGRP3 with Ki values of 3.5 and 3.8 nm, respectively, reflecting 8- and 90-fold selectivity relative to PKCepsilon and PKCalpha. By Western blot of Chinese hamster ovary cells, 130C037 selectively induced loss from the cytosol of RasGRP3 (ED50 = 286 nm), partial reduction of PKCepsilon (ED50 > 10 microm), and no effect on PKCalpha. As determined by confocal microscopy in LNCaP cells, 130C037 caused rapid translocation of RasGRP3, limited slow translocation of PKCepsilon, and no translocation of PKCalpha. Finally, 130C037 induced Erk phosphorylation in HEK-293 cells ectopically expressing RasGRP3 but not in control cells, whereas phorbol ester induced phosphorylation in both. The properties of 130C037 provide strong proof of principle for the feasibility of developing ligands with selectivity among C1 domain-containing therapeutic targets.


Asunto(s)
Diglicéridos/farmacología , Lactonas/farmacología , Proteína Quinasa C/metabolismo , Animales , Sitios de Unión , Línea Celular , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Isoenzimas , Forbol 12,13-Dibutirato/farmacología , Fosforilación/efectos de los fármacos , Unión Proteica , Proteína Quinasa C/química , Proteína Quinasa C-alfa , Proteína Quinasa C-delta , Transporte de Proteínas , Factores de Intercambio de Guanina Nucleótido ras
5.
J Med Chem ; 47(12): 3248-54, 2004 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-15163204

RESUMEN

A solid-phase method for the synthesis of diacylglycerol lactones as protein kinase C ligands was developed, and a small array of nine compounds were selected with the idea of testing this methodology and forecasting the reliability of the biological data as a preamble for the construction of large chemical libraries to be synthesized under the same conditions. The process started with the loading of 5-(hydroxymethyl)-5-[(4-methoxyphenoxy)methyl]-3,4,5-trihydrofuran-2-one (1) to a 3,4-dihydro-2H-pyran resin packed inside IRORI MacroKan reactors. The elements of diversity were introduced at the alpha-alkylidene (R(1)) and acyl (R(2)) positions using a set of three different aldehydes and three different acid chlorides, respectively. An LDA-mediated aldol condensation with R(1)CHO in the presence of ZnCl(2) followed by a DBU-catalyzed elimination of the triflate of the resulting aldol gave the alpha-alkylidene intermediates as mixtures of geometric isomers. Removal of the aryl-protecting group followed by acylation with R(2)COCl introduced the second element of diversity. Acid-assisted cleavage of the compounds from the resin afforded the final targets. The biological results obtained using the crude samples directly obtained from the resin compared well with those from pure materials, as the K(i) values between the two sets varied only by a factor between 1.5 and 3.7.


Asunto(s)
Diglicéridos/síntesis química , Lactonas/síntesis química , Proteína Quinasa C/antagonistas & inhibidores , Unión Competitiva , Técnicas Químicas Combinatorias , Diglicéridos/química , Isoenzimas/antagonistas & inhibidores , Lactonas/química , Ligandos , Proteína Quinasa C/química , Proteína Quinasa C-alfa , Relación Estructura-Actividad
6.
J Org Chem ; 68(5): 1958-63, 2003 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-12608817

RESUMEN

The hydrozirconation reaction of 1-alkynyl sulfoxides or sulfones with Cp2Zr(H)Cl in THF at room temperature predominantly gave Z-beta-zirconated vinyl sulfoxides or sulfones with excellent regioselectivity. Compared with 1-alkynyl sulfoxides, the hydrozirconation reaction of 1-alkynyl sulfones exhibits great synthetic potential, leading to the efficient preparation of Z-beta-halovinyl sulfones, Z-beta-sulfonyl alpha,beta-unsaturated ketones, and Z-beta-alkynyl vinyl sulfones. Although the reaction mechanisms are still not clear, the neighboring group participation of the sulfinyl or sulfonyl group may be playing an important role in this unique hydrozirconation reaction.

7.
J Comb Chem ; 4(3): 239-47, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12005484

RESUMEN

In this contribution, we constructed a library of butenolides with 77 members by parallel synthesis strategy on Merrifield resin. Sixteen 2,3-allenoic acids and 12 polymer-bound aryl iodides were combined to react with each other, and then the polymer-supported products were cleaved to release butenolide derivatives. The reactions with alkyl-substituted 2,3-allenoic acids in acetonitrile afforded the corresponding products in high yields and high purities, whereas those with aryl-substituted acids in acetonitrile failed. After some reaction conditions were screened, the solid-phase reactions with aryl-substituted 2,3-allenoic acids were realized in toluene, and the products are of good purities albeit in slightly low yields. In the benzyl ether linkage, a new cleavage model was found. By adding 6 equiv of acetyl bromide, we can get single (5-oxo-2,5-dihydrofuran-3-yl)benzyl bromide other than the corresponding benzyl acetate. To further increase the diversities, a dihydropyran (DHP) linker was introduced into our combinatorial synthesis of butenolides. By reversing the addition sequence of 2,3-allenoic acids and organic base, we realized the solid-phase cyclization reaction of polymer-bound aryl iodides with the THP linkage in moderate yields and good purities. Now the library of butenolides includes (5-oxo-2,5-dihydrofuran-3-yl)benzoic acids, -aryl acetates, -benzyl bromides, -benzyl alcohols, and -phenols, which are difficult to synthesize with conventional solution methods.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Furanos/síntesis química , 4-Butirolactona/análogos & derivados , Ácidos Carboxílicos/química , Catálisis , Reactivos de Enlaces Cruzados/química , Ciclización , Éteres/química , Hidrocarburos Yodados/química , Paladio/química , Resinas Sintéticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...