Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nurs Open ; 11(3): e2139, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38488440

RESUMEN

AIM: The purpose of this study was to understand the caregiving experiences of breast cancer family caregivers and explore the profound impacts of those experiences on their quality of life. DESIGN: A qualitative research method was used. METHODS: We extended invitations to 23 family caregivers of outpatients and inpatients receiving breast surgery and oncology treatments in Taiyuan, China, to participate in semi-structured interviews. The interviews were audio-recorded and transcribed verbatim. Thematic analysis was employed to analyse the interview data. RESULTS: Four themes and associated categories were identified: (1) changes in family dynamics, (2) the socio-medical context, (3) interactions between family and society, (4) self-efficacy and nine subthemes and their related categories, where virtually all participants expressed future uncertainty, emotional contagion, and personal challenges, and self-efficacy had a moderating influence on the first three themes. PATIENT OR PUBLIC CONTRIBUTION: This study did not involve direct participation of patients or the public. However, their experiences and perspectives on caregiving were indirectly reflected through the insights provided by the family caregivers who participated in the interviews. Their valuable input contributed to a deeper understanding of the caregiving experience and its impact on the quality of life for Chinese breast cancer family caregivers.


Asunto(s)
Neoplasias de la Mama , Cuidadores , Humanos , Femenino , Cuidadores/psicología , Familia/psicología , Calidad de Vida , Investigación Cualitativa
2.
J Hazard Mater ; 466: 133471, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38266587

RESUMEN

This review provides a comprehensive overview of the occurrence, fate, treatment and multi-criteria analysis of microplastics (MPs) and organic contaminants (OCs) in biosolids. A meta-analysis was complementarily analysed through the literature to map out the occurrence and fate of MPs and 10 different groups of OCs. The data demonstrate that MPs (54.7% occurrence rate) and linear alkylbenzene sulfonate surfactants (44.2% occurrence rate) account for the highest prevalence of contaminants in biosolids. In turn, dioxin, polychlorinated biphenyls (PCBs) and phosphorus flame retardants (PFRs) have the lowest rates (<0.01%). The occurrence of several OCs (e.g., dioxin, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, pharmaceutical and personal care products, ultraviolet filters, phosphate flame retardants) in Europe appear at higher rates than in Asia and the Americas. However, MP concentrations in biosolids from Australia are reported to be 10 times higher than in America and Europe, which required more measurement data for in-depth analysis. Amongst the OC groups, brominated flame retardants exhibited exceptional sorption to biosolids with partitioning coefficients (log Kd) higher than 4. To remove these contaminants from biosolids, a wide range of technologies have been developed. Our multicriteria analysis shows that anaerobic digestion is the most mature and practical. Thermal treatment is a viable option; however, it still requires additional improvements in infrastructure, legislation, and public acceptance.


Asunto(s)
Dioxinas , Retardadores de Llama , Microplásticos , Plásticos , Biosólidos , Retardadores de Llama/análisis
3.
IEEE J Biomed Health Inform ; 28(2): 858-869, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032774

RESUMEN

Medical image segmentation is a critical task for clinical diagnosis and research. However, dealing with highly imbalanced data remains a significant challenge in this domain, where the region of interest (ROI) may exhibit substantial variations across different slices. This presents a significant hurdle to medical image segmentation, as conventional segmentation methods may either overlook the minority class or overly emphasize the majority class, ultimately leading to a decrease in the overall generalization ability of the segmentation results. To overcome this, we propose a novel approach based on multi-step reinforcement learning, which integrates prior knowledge of medical images and pixel-wise segmentation difficulty into the reward function. Our method treats each pixel as an individual agent, utilizing diverse actions to evaluate its relevance for segmentation. To validate the effectiveness of our approach, we conduct experiments on four imbalanced medical datasets, and the results show that our approach surpasses other state-of-the-art methods in highly imbalanced scenarios. These findings hold substantial implications for clinical diagnosis and research.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos
4.
Water Res ; 247: 120788, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924683

RESUMEN

Magnesium hydroxide [Mg(OH)2] is a non-hazardous chemical widely applied in sewer systems for managing odour and corrosion. Despite its proven effectiveness in mitigating these issues, the impacts of dosing Mg(OH)2 in sewers on downstream wastewater treatment plants have not been comprehensively investigated. Through a one-year operation of laboratory-scale urban wastewater systems, including sewer reactors, sequencing batch reactors, and anaerobic sludge digesters, the findings indicated that Mg(OH)2 dosing in sewer systems had multifaceted benefits on downstream treatment processes. Compared to the control, the Mg(OH)2-dosed experimental system displayed elevated sewage pH (8.8±0.1vs 7.1±0.1), reduced sulfide concentration by 35.1%±4.9% (6.7±0.9mgSL-1), and lower methane concentration by 58.0%±4.9% (19.1±3.6mgCODL-1). Additionally, it increased alkalinity by 16.3%±2.2% (51.9±5.4mgCaCO3L-1), and volatile fatty acids concentration by 207.4%±22.2% (56.6±9.0mgCODL-1) in sewer effluent. While these changes offered limited advantages for downstream nitrogen removal in systems with sufficient alkalinity and carbon sources, significant improvements in ammonium oxidation rate and NOx reduction rate were observed in cases with limited alkalinity and carbon sources availability. Moreover, Mg(OH)2 dosing in upstream did not have any detrimental effects on anaerobic sludge digesters. Magnesium-phosphate precipitation led to a 31.7%±4.1% reduction in phosphate concertation in anaerobic digester sludge supernatant (56.1±10.4mgPL-1). The retention of magnesium in sludge increased settleability by 13.9%±1.6% and improved digested sludge dewaterability by 10.7%±5.3%. Consequently, the use of Mg(OH)2 dosing in sewers could potentially reduce downstream chemical demand and costs for carbon sources (e.g., acetate), pH adjustment and sludge dewatering.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Hidróxido de Magnesio , Magnesio , Hierro , Fosfatos , Carbono
5.
Water Res ; 247: 120754, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37897992

RESUMEN

Membrane aerated biofilm reactor (MABR) and shortcut nitrogen removal are two types of solutions to reduce energy consumption in wastewater treatment, with the former improving the aeration efficiency and the latter reducing the oxygen demand. However, integrating these two solutions, i.e., achieving shortcut nitrogen removal in MABR, is challenging due to the difficulty in suppressing nitrite-oxidizing bacteria (NOB). In this study, four MABRs were established to demonstrate the feasibility of initiating, maintaining, and restoring NOB suppression using low dissolved oxygen (DO) control, in the presence and absence of anammox bacteria, respectively. Long-term results revealed that the strict low DO (< 0.1 mg/L) in MABR could initiate and maintain stable NOB suppression for more than five months with nitrite accumulation ratio above 90 %, but it was unable to re-suppress NOB once they prevailed. Moreover, the presence of anammox bacteria increased the threshold of DO level to maintain NOB suppression in MABRs, but it was still incapable to restore the deteriorated NOB suppression in conjunction with low DO control. Mathematical modelling confirmed the experimental results and further explored the differences of NOB suppression in conventional biofilms and MABR biofilms. Simulation results showed that it is more challenging to maintain stable NOB suppression in MABRs compared to conventional biofilms, regardless of biofilm thickness or influent nitrogen concentration. Kinetic mechanisms for NOB suppression in different types of biofilms were proposed, suggesting that it is difficult to wash out NOB developed in the innermost layer of MABR biofilms because of the high oxygen level and low sludge wasting rate. In summary, this study systematically demonstrated the challenges of NOB suppression in MABRs through both experiments and mathematical modelling. These findings provide valuable insights into the applications of MABRs and call for more studies in developing effective strategies to achieve stable shortcut nitrogen removal in this energy-efficient configuration.


Asunto(s)
Nitritos , Oxígeno , Reactores Biológicos/microbiología , Bacterias , Nitrógeno , Aguas del Alcantarillado , Biopelículas , Oxidación-Reducción
6.
Water Res ; 245: 120609, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713792

RESUMEN

In the pursuit of energy and carbon neutrality, nitrogen removal technologies have been developed featuring nitrite (NO2-) accumulation. However, high NO2- accumulations are often associated with stimulated greenhouse gas (i.e., nitrous oxide, N2O) emissions. Furthermore, the coexistence of free nitrous acid (FNA) formed by NO2- and proton (pH) makes the consequence of NO2- accumulation on N2O emissions complicated. The concurrent three factors, NO2-, pH and FNA may play different roles on N2O and nitric oxide (NO) emissions simultaneously, which has not been systematically studied. This study aims to decouple the effects of NO2- (0-200 mg N/L), pH (6.5-8) and FNA (0-0.15 mg N/L) on the N2O and NO production rates and the production pathways by ammonia oxidizing bacteria (AOB), with the use of a series of precisely executed batch tests and isotope site-preference analysis. Results suggested the dominant factors affecting the N2O production rate were NO2- and FNA concentrations, while pH alone played a relatively insignificant role. The most influential factor shifted from NO2- to FNA as FNA concentrations increased from 0 to 0.15 mg N/L. At concentrations below 0.0045 mg HNO2-N/L, nitrite rather than FNA played a significant role stimulating N2O production at elevated nitrite concentrations. The inhibition effect of FNA emerged with further increase of FNA between 0.0045-0.015 mg HNO2-N/L, weakening the promoting effect of increased nitrite. While at concentrations above 0.015 mg HNO2-N/L, FNA inhibited N2O production especially from nitrifier denitrification pathway with the level of inhibition linearly correlated with the FNA concentration. pH and the nitrite concentration regulated the production pathways, with elevated pH promoting the nitrifier nitrification pathway, while elevated NO2- concentrations promoting the nitrifier denitrification pathway. In contrast to N2O, NO emission was less susceptible to FNA at concentrations up to 0.015 mg N/L but was stimulated by increasing NO2- concentrations. This study, for the first time, distinguished the effects of pH, NO2- and FNA on N2O and NO production, thereby providing support to the design and operation of novel nitrogen removal systems with NO2- accumulation.

7.
Neural Netw ; 167: 223-232, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37660671

RESUMEN

Graph representation is a critical technology in the field of knowledge engineering and knowledge-based applications since most knowledge bases are represented in the graph structure. Nowadays, contrastive learning has become a prominent way for graph representation by contrasting positive-positive and positive-negative node pairs between two augmentation graphs. It has achieved new state-of-the-art in the field of self-supervised graph representation. However, existing contrastive graph representation methods mainly focus on modifying (normally removing some edges/nodes) the original graph structure to generate the augmentation graph for the contrastive. It inevitably changes the original graph structures, meaning the generated augmentation graph is no longer equivalent to the original graph. This harms the performance of the representation in many structure-sensitive graphs such as protein graphs, chemical graphs, molecular graphs, etc. Moreover, there is only one positive-positive node pair but relatively massive positive-negative node pairs in the self-supervised graph contrastive learning. This can lead to the same class, or very similar samples are considered negative samples. To this end, in this work, we propose a Virtual Masking Augmentation (VMA) to generate an augmentation graph without changing any structures from the original graph. Meanwhile, a node augmentation method is proposed to augment the positive node pairs by discovering the most similar nodes in the same graph. Then, two different augmentation graphs are generated and put into a contrastive learning model to learn the graph representation. Extensive experiments on massive datasets demonstrate that our method achieves new state-of-the-art results on self-supervised graph representation. The source code of the proposed method is available at https://github.com/DuanhaoranCC/CGRA.


Asunto(s)
Ingeniería , Conocimiento , Bases del Conocimiento , Aprendizaje , Programas Informáticos
8.
Neural Netw ; 166: 38-50, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37480768

RESUMEN

Zero-shot learning (ZSL) aims to predict unseen classes without using samples of these classes in model training. The ZSL has been widely used in many knowledge-based models and applications to predict various parameters, including categories, subjects, and anomalies, in different domains. Nonetheless, most existing ZSL methods require the pre-defined semantics or attributes of particular data environments. Therefore, these methods are difficult to be applied to general data environments, such as ImageNet and other real-world datasets and applications. Recent research has tried to use open knowledge to enhance the ZSL methods to adapt it to an open data environment. However, the performance of these methods is relatively low, namely the accuracy is normally below 10%, which is due to the inadequate semantics that can be used from open knowledge. Moreover, the latest methods suffer from a significant "semantic gap" problem between the generated features of unseen classes and the real features of seen classes. To this end, this paper proposes a multi-view graph representation with a similarity diffusion model, applying the ZSL tasks to general data environments. This model applies a multi-view graph to enhance the semantics fully and proposes an innovative diffusion method to augment the graph representation. In addition, a feature diffusion method is proposed to augment the multi-view graph representation and bridge the semantic gap to realize zero-shot predicting. The results of numerous experiments in general data environments and on benchmark datasets show that the proposed method can achieve new state-of-the-art results in the field of general zero-shot learning. Furthermore, seven ablation studies analyze the effects of the settings and different modules of the proposed method on its performance in detail and prove the effectiveness of each module.


Asunto(s)
Benchmarking , Aprendizaje , Humanos , Difusión , Conocimiento , Bases del Conocimiento
9.
Sci Total Environ ; 895: 165174, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385509

RESUMEN

The sidestream sludge treatment by free ammonium (FA)/free nitrous acid (FNA) dosing was frequently demonstrated to maintain the nitrite pathway for the partial nitrification (PN) process. Nevertheless, the inhibitory effect of FA and FNA would severely influence polyphosphate accumulating organisms (PAOs), destroying the microbe-based phosphorus (P) removal. Therefore, a strategic evaluation was proposed to successfully achieve biological P removal with a partial nitrification process in a single sludge system by sidestream FA and FNA dosing. Through the long-term operation of 500 days, excellent phosphorus, ammonium and total nitrogen removal performance were achieved at 97.5 ± 2.6 %, 99.1 ± 1.0 % and 75.5 ± 0.4 %, respectively. Stable partial nitrification with a nitrite accumulation ratio (NAR) of 94.1 ± 3.4 was attained. The batch tests also reported the robust aerobic phosphorus uptake based on FA and FNA adapted sludge after exposure of FA and FNA, respectively, suggesting the FA and FNA treatment strategy could potentially offer the opportunity for the selection of PAOs, which synchronously have the tolerance to FA and FNA. Microbial community analysis suggested that Accumulibacter, Tetrasphaera, and Comamonadaceae collectively contributed to the phosphorus removal in this system. Summarily, the proposed work presents a novel and feasible strategy to integrate enhanced biological phosphorus removal (EBPR) and short-cut nitrogen cycling and bring the combined mainstream phosphorus removal and partial nitrification process closer to practical application.


Asunto(s)
Compuestos de Amonio , Ácido Nitroso , Nitritos/metabolismo , Nitrificación , Amoníaco , Aguas del Alcantarillado , Fósforo/metabolismo , Reactores Biológicos , Nitrógeno/metabolismo , Polifosfatos
10.
EMBO J ; 42(12): e112362, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37155573

RESUMEN

eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Neoplasias , Humanos , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas
11.
Sci Total Environ ; 883: 163540, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37086997

RESUMEN

Partial nitritation-anammox (PN/A) process is known as an energy-efficient technology for wastewater nitrogen removal, which possesses a great potential to bring wastewater treatment plants close to energy neutrality with reduced carbon footprint. To achieve this goal, various PN/A processes implemented in a single reactor configuration (one-stage system) or two separately dedicated reactors configurations (two-stage system) were explored over the past decades. Nevertheless, large-scale implementation of these PN/A processes for low-strength municipal wastewater treatment has a long way to go owing to the low efficiency and effectiveness in nitrogen removal. In this work, we provided a comprehensive analysis of one-stage and two-stage PN/A processes with a focus on evaluating their engineering application potential towards mainstream implementation. The difficulty for nitrite-oxidizing bacteria (NOB) out-selection was revealed as the critical operational challenge to achieve the desired effluent quality. Additionally, the operational strategies of low oxygen commonly adopted in one-stage systems for NOB suppression and facilitating anammox bacteria growth results in a low nitrogen removal rate (NRR). Introducing denitrification into anammox system was found to be necessary to improve the nitrogen removal efficiency (NRE) by reducing the produced nitrate with in-situ utilizing the organics from wastewater itself. However, this may lead to part of organics oxidized with additional oxygen consumed in one-stage system, further compromising the NRR. By applying a relatively high dissolved oxygen in PN reactor with residual ammonium control, and followed by a granules-based anammox reactor feeding with a small portion of raw municipal wastewater, it appeared that two-stage system could achieve a good effluent quality as well as a high NRR. In contrast to the widely studied one-stage system, this work provided a unique perspective that more effort should be devoted to developing a two-stage PN/A process to evaluate its application potential of high efficiency and economic benefits towards mainstream implementation.


Asunto(s)
Compuestos de Amonio , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitritos , Nitrógeno , Bacterias , Oxígeno , Aguas del Alcantarillado , Desnitrificación
12.
Environ Sci Technol ; 57(16): 6712-6722, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37038903

RESUMEN

This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Desnitrificación , Nitrógeno , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción
13.
IEEE Trans Pattern Anal Mach Intell ; 45(11): 12747-12759, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37018310

RESUMEN

It is uncertain whether the power of transformer architectures can complement existing convolutional neural networks. A few recent attempts have combined convolution with transformer design through a range of structures in series, where the main contribution of this paper is to explore a parallel design approach. While previous transformed-based approaches need to segment the image into patch-wise tokens, we observe that the multi-head self-attention conducted on convolutional features is mainly sensitive to global correlations and that the performance degrades when these correlations are not exhibited. We propose two parallel modules along with multi-head self-attention to enhance the transformer. For local information, a dynamic local enhancement module leverages convolution to dynamically and explicitly enhance positive local patches and suppress the response to less informative ones. For mid-level structure, a novel unary co-occurrence excitation module utilizes convolution to actively search the local co-occurrence between patches. The parallel-designed Dynamic Unary Convolution in Transformer (DUCT) blocks are aggregated into a deep architecture, which is comprehensively evaluated across essential computer vision tasks in image-based classification, segmentation, retrieval and density estimation. Both qualitative and quantitative results show our parallel convolutional-transformer approach with dynamic and unary convolution outperforms existing series-designed structures.

14.
Water Res ; 234: 119820, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889087

RESUMEN

Sulfide and methane production are a major concern in sewer management. Many solutions with the use of chemicals have been proposed yet incurring huge costs. Here, this study reports an alternative solution to reduce sulfide and methane production in sewer sediments. This is achieved through integration of urine source separation, rapid storage, and intermittent in situ re-dosing into a sewer. Based on a reasonable capacity of urine collection, an intermittent dosing strategy (i.e. 40 min per day) was designed and then experimentally tested using two laboratory sewer sediment reactors. The long-term operation showed that the proposed urine dosing in the experimental reactor effectively reduced sulfidogenic and methanogenic activities by 54% and 83%, compared to those in the control reactor. In-sediment chemical and microbial analyses revealed that the short-term exposure to urine wastewater was effective in suppressing sulfate-reducing bacteria and methanogenic archaea, particularly within a surface active zone of sediments (0-0.5 cm) likely attributed to the biocidal effect of urine free ammonia. Economic and environmental assessments indicated that the proposed urine approach can save 91% in total costs, 80% in energy consumption and 96% in greenhouse gas emissions compared to the conventional use of chemicals (including ferric salt, nitrate, sodium hydroxide, and magnesium hydroxide). These results collectively demonstrated a practical solution without chemical input to improve sewer management.


Asunto(s)
Metano , Aguas del Alcantarillado , Sulfuros , Eliminación de Residuos Líquidos , Compuestos Férricos , Nitratos , Aguas del Alcantarillado/microbiología , Orina
15.
Water Res X ; 19: 100166, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36685722

RESUMEN

Mainstream nitrogen removal via anammox is widely recognized as a promising wastewater treatment process. However, its application is challenging at large scale due to unstable suppression of nitrite-oxidizing bacteria (NOB). In this study, a pilot-scale mainstream anammox process was implemented in an Integrated Fixed-film Activated Sludge (IFAS) configuration. Stable operation with robust NOB suppression was maintained for over one year. This was achieved through integration of three key control strategies: i) low dissolved oxygen (DO = 0.4 ± 0.2 mg O2/L), ii) regular free nitrous acid (FNA)-based sludge treatment, and iii) residual ammonium concentration control (NH4 + with a setpoint of ∼8 mg N/L). Activity tests and FISH demonstrated that NOB barely survived in sludge flocs and were inhibited in biofilms. Despite receiving organic-deficient wastewater from a pilot-scale High-Rate Activated Sludge (HRAS) system as the feed, the system maintained a stable effluent total nitrogen concentration mostly below 10 mg N/L, which was attributed to the successful retention of anammox bacteria. This study successfully demonstrated large-scale long-term mainstream anammox application and generated new practical knowledge for NOB control and anammox retention.

16.
Artículo en Inglés | MEDLINE | ID: mdl-36673684

RESUMEN

Background: Post-stroke depression (PSD) is most prevalent during the rehabilitative period following a stroke. Recent studies verified the effects of repetitive transcranial magnetic stimulation therapy (rTMS) and mindfulness-based stress reduction (MBSR) in patients with depression. However, the effectiveness and prospect of application in PSD patients remain unclear. This study sought to evaluate the effectiveness of a combined intervention based on rTMS and MBSR for the physical and mental state of PSD patients. Methods: A randomized, double-blind, sham-controlled study design was employed. Participants were recruited from the Rehabilitation Medicine Centre and randomly assigned to receive either MBSR combined with active or sham rTMS or sham rTMS combined with general psychological care. We used a 17-item Hamilton Depression Rating Scale (HAMD-17), a mini-mental state examination (MMSE), the Modified Barthel Index (MBI), and the Pittsburgh Sleep Quality Index (PSQI) to evaluate depressed symptoms, cognitive function, activities of daily living (ADL), and sleep quality at baseline, post-intervention, and the 8-week follow-up. A two-factor analysis of variance was used to compare differences between groups, and Pearson's linear correlation was used to analyze the possible relationship between variables and potential predictors of depression improvement. Results: Seventy-two participants were randomized to rTMS−MBSR (n = 24), sham rTMS−MBSR (n = 24), or sham rTMS−general psychological care (n = 24). A total of 71 patients completed the questionnaire, a 99% response rate. There were significant time and group interaction effects in HAMD-17, MMSE, MBI, and PSQI scores (p < 0.001). The repeated-measure ANOVA showed a significant improvement of all variables in rTMS−MBSR compared to sham rTMS−MBSR and sham rTMS combined with general psychological care (p < 0.05). Additional results demonstrated that cognitive function, sleep quality, and activities of daily living are associated with depressive symptoms, and cognitive function is a potential variable for improved depression. Conclusion: Depressive symptoms can be identified early by assessing cognitive function, and rTMS−MBSR might be considered a potentially helpful treatment for PSD.


Asunto(s)
Atención Plena , Accidente Cerebrovascular , Humanos , Estimulación Magnética Transcraneal/métodos , Depresión/etiología , Depresión/terapia , Actividades Cotidianas , Accidente Cerebrovascular/complicaciones , Resultado del Tratamiento , Método Doble Ciego
17.
Water Res ; 230: 119542, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603308

RESUMEN

The acidic (i.e., pH ∼5) activated sludge process is attracting attention because it enables stable nitrite accumulation and enhances sludge reduction and stabilization, compared to the conventional process at neutral pH. Here, this study examined the production and potential pathways of nitric oxide (NO) and nitrous oxide (N2O) during acidic sludge digestion. With continuous operation of a laboratory-scale aerobic digester at high dissolved oxygen concentration (DO>4 mg O2 L-1) and low pH (4.7±0.6), a significant amount of total nitrogen (TN) loss (i.e., 18.6±1.5% of TN in feed sludge) was detected. Notably, ∼40% of the removed TN was emitted as NO, with ∼8% as N2O. A series of batch assays were then designed to explain the observed TN loss under aerobic conditions. All assays were conducted with a low concentration of volatile solids (VS), i.e., VS<4.5 g L-1. This VS concentration is commensurate with the values commonly found in the aeration tanks of full-scale wastewater treatment systems, and thus no significant nitrogen loss should be expected when DO is controlled above 4 mg O2 L-1. However, nitrite disappeared at a significant rate (with the chemical decomposition of nitrite excluded), leading to NO production in the batch assays at pH 5. The nitrite reduction could be associated with endogenous microbial activities, e.g., nitrite detoxification. The significant NO production illustrates the importance of aerobic nitrite reduction during acidic aerobic sludge digestion, suggesting this process cannot be neglected in developing acidic activated sludge technology.


Asunto(s)
Óxido Nítrico , Nitritos , Aguas del Alcantarillado/química , Reactores Biológicos , Eliminación de Residuos Líquidos , Óxido Nitroso/metabolismo , Concentración de Iones de Hidrógeno , Nitrógeno
18.
Bioresour Technol ; 371: 128608, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640822

RESUMEN

The waste activated sludge (WAS) of wastewater treatment system is often rich in phosphorus (P), which is a basic element of human life and could use up in the near future. This study proposed an integrated approach to efficiently recover P as vivianite from WAS and simultaneously enhance the sludge dewaterability. The raw WAS was first acidified using FeCl3, which was then fed to anaerobic fermenter for Fe3+ reduction. After fermentation, a technology named acid-elutriation was introduced to convert Fe and P from solid phase to liquid phase and concomitantly enhance the liquor-solid separation. Finally, vivianite was obtained via sludge eluate neutralization. The enhanced sludge dewaterability not only increases the recovery efficiency of Fe and P but also decreases the cost of sludge disposal.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Humanos , Fosfatos , Compuestos Ferrosos , Fósforo
19.
Sci Total Environ ; 855: 158648, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096212

RESUMEN

Reducing the water content of waste activated sludge (WAS) is critical for sludge treatment and disposal in wastewater treatment plants (WWTPs). In this study, a new combined conditioning processes by using lysozyme (LZM) and free nitrous acid (FNA) were proposed and demonstrated to enhance the dewaterability of WAS. The water content of sludge cake dropped from 82.82 % to 68.42 % (1 h FNA treatment + 1 h LZM treatment) and 69.52 % (6 h FNA treatment + 1 h LZM treatment) with the combined FNA and LZM treatment; and the corresponding capillary suction time (CST) reduction efficiency increased 49.29 % (1 h FNA treatment + 1 h LZM treatment) and 52.98 % (6 h FNA treatment + 1 h LZM treatment). A comprehensive investigation conducted in this study revealed the underlying mechanism of dewaterability improvement lies in the transformations of extracellular polymeric substances (EPS). The combined conditioning led to enhanced hydrophobicity in the sludge, as suggested by FTIR protein secondary structure and interfacial free energy. The reduced zeta potential and the potential barrier indicated the reduction of the repulsive force of sludge particles and the bound water content in the conditioned floc. The hydrophobicity, flow permeability and flocculability were enhanced after combined treatment, leading to the release of bound water.


Asunto(s)
Ácido Nitroso , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Muramidasa , Agua/química , Proteínas
20.
Front Oncol ; 12: 986208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338740

RESUMEN

Purpose: We aimed to ascertain the effectiveness of gonadotropin-releasing hormone (GnRH) agonist co-therapy for the preservation of ovarian function in patients with ovarian malignancy who underwent unilateral salpingo-oophorectomy and platinum-based chemotherapy. Methods: We enrolled 158 patients with ovarian malignancy who underwent fertility preservation surgery and postoperative platinum-based chemotherapy between January 2018 and December 2020. Patients were divided into two groups based on the use of GnRH agonist (GnRHa) during chemotherapy. Two patients withdrew from the study. Laboratory tests (serum follicle-stimulating hormone [FSH], serum luteinizing hormone [LH], and serum anti-Müllerian hormone [AMH]) were performed pre-chemotherapy and one year post-chemotherapy. Data on menstruation resumption, perimenopausal symptoms (modified Kupperman Menopausal Index [KMI]), health-related quality of life (Medical Outcomes Study Short Form-36 [MOS SF-36]), and obstetric outcomes were collected. Results: One year post-chemotherapy, the serum AMH level in the GnRHa group was higher than that in the control group (P<0.001), while the serum FSH and FSH/LH levels in the GnRHa group were lower than those in the control group (P<0.001). The mean period from last chemotherapy to menstrual resumption was 3.86 and 5.78 months in the GnRHa and control groups (P<0.001), respectively. The rate of menstrual resumption post-chemotherapy was 93.5% and 82.3% in the GnRHa and control groups (P<0.05), respectively. GnRHa co-administration during chemotherapy reduced the likelihood of low AMH levels post-chemotherapy and was significant in the multivariate analysis (P<0.05). The modified KMI scores and MOS SF-36 scores were better in the GnRHa group than in the control group (both P<0.001). Conclusion: GnRHa protects ovarian function during platinum-based adjuvant chemotherapy in young patients with ovarian malignancy. This study provides a therapeutic reference for gynecologists, especially for those in economically and medically underdeveloped areas. Trial registration: Chinese Clinical Trial Registry (chiCTR1800019114; October 26, 2018; http://www.chictr.org.cn/index.aspx).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...