Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(20): 206601, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809106

RESUMEN

Recently discovered Dirac semimetals (DSMs) with two Dirac nodes, such as Na_{3}Bi and Cd_{2}As_{3}, are regarded as carrying the Z_{2} topological charge in addition to the chiral charge. We study the Floquet phase transition of Z_{2} topological DSMs subjected to a beam of circularly polarized light. Owing to the resulting interplay of the chiral and Z_{2} charges, the Weyl nodes are not only chirality dependent but also spin dependent, which constrains the behavior in creation and annihilation of the pair of Weyl nodes. Interestingly, we find a novel phase: One spin band is in the Weyl semimetal phase while the other is in the insulator phase, and we dub it the Weyl half-metal (WHM) phase. We further study the spin-dependent transport in a Dirac-Weyl semimetal junction and find a spin filter effect as a fingerprint of the existence of the WHM phase. The proposed spin filter effect, based on the WHM bulk band, is highly tunable in a broad parameter regime and robust against magnetic disorder, which is expected to overcome the shortcomings of the previously proposed spin filter based on the topological edge or surface states. Our results offer a unique opportunity to explore the potential applications of topological DSMs in spintronics.

2.
J Phys Condens Matter ; 30(33): 335404, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-29985161

RESUMEN

We provide a general transport theory for spin-polarized scanning tunneling microscopy (STM) through a doped topological insulator (TI) surface. It is found that different from the conventional magnetic substrate, the tunneling conductance through the tip-TI surface acquires an extra component determined by the in-plane spin texture, exclusively associated with the spin momentum locking. Importantly, this extra conductance unconventionally depends on the spatial azimuthal angle of the magnetized STM tip. By introducing a magnetic impurity to break the symmetry of rotation and local time reversal of the TI surface, we find that the measurement of the spatial resolved conductance can reconstruct the helical structure of spin texture, from which the spin-momentum locking angle can be extracted if the in-plane magnetization is induced purely by the spin-orbit coupling of surface Dirac electrons. Our theory offers an alternative way, differing from existing in-plane-current polarization probed in a multi-terminal setup or angle resolved photoemission spectroscopy, to electrically identify the helical spin texture on TI surfaces.

3.
Sci Rep ; 8(1): 6185, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29670198

RESUMEN

Silicene offers an ideal platform for exploring the phase transition due to strong spin-orbit interaction and its unique structure with strong tunability. With applied electric field and circularly polarized light, silicone is predicted to exhibit rich phases. We propose that these intricate phase transitions can be detected by measuring the bulk Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. We have in detail analyzed the dependence of RKKY interaction on phase parameters for different impurity configurations along zigzag direction. Importantly, we present an interesting comparison between different terms of RKKY interaction with phase diagram. It is found that the in-plane and out-of-plane terms can exhibit the local extreme value or change of sign at the phase critical point and remarkable difference in magnitude for different phase regions. Consequently, the magnetic measurement provides unambiguous signatures to identify various types of phase transition simultaneously, which can be carried out with present technique.

4.
Sci Rep ; 7(1): 3971, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28638115

RESUMEN

We investigate the thermoelectric effect on a topological insulator surface with particular interest in impurity-induced resonant states. To clarify the role of the resonant states, we calculate the dc and ac conductivities and the thermoelectric coefficients along the longitudinal direction within the full Born approximation. It is found that at low temperatures, the impurity resonant state with strong energy de-pendence can lead to a zero-energy peak in the dc conductivity, whose height is sensitively dependent on the strength of scattering potential, and even can reverse the sign of the thermopower, implying the switching from n- to p-type carriers. Also, we exhibit the thermoelectric signatures for the filling process of a magnetic band gap by the resonant state. We further study the impurity effect on the dynamic optical conductivity, and find that the resonant state also generates an optical conductivity peak at the absorption edge for the interband transition. These results provide new perspectives for understanding the doping effect on topological insulator materials.

5.
Sci Rep ; 6: 36106, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808262

RESUMEN

Currently, Weyl semimetals (WSMs) are drawing great interest as a new topological nontrivial phase. When most of the studies concentrated on the clean host WSMs, it is expected that the dirty WSM system would present rich physics due to the interplay between the WSM states and the impurities embedded inside these materials. We investigate theoretically the change of local density of states in three-dimensional Dirac and Weyl bulk states scattered off a quantum impurity. It is found that the quantum impurity scattering can create nodal resonance and Kondo peak/dip in the host bulk states, remarkably modifying the pristine spectrum structure. Moreover, the joint effect of the separation of Weyl nodes and the Friedel interference oscillation causes the unique battering feature. We in detail an- alyze the different contribution from the intra- and inter-node scattering processes and present various scenarios as a consequence of competition between them. Importantly, these behaviors are sensitive significantly to the displacement of Weyl nodes in energy or momentum, from which the distinctive fingerprints can be extracted to identify various semimetal materials experimentally by employing the scanning tunneling microscope.


Asunto(s)
Metales/química , Modelos Teóricos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA