Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38822993

RESUMEN

Cysteine (Cys) plays an indispensable role as an antioxidant in the maintenance of bioredox homeostasis. We have constructed an efficient fluorescent probe Mito-Cys based on the binding of indole and naphthol. The acrylic ester group serves as a recognition switch for specific detection of Cys, which undergoes Michael addition and intramolecular cyclization reactions, thereby ensuring the chemical kinetics priority of Cys compared to other biothiols. The probe has good water solubility, large Stokes shift (137 nm), with a detection limit of 21.81 nM. In addition, cell imaging experiments have shown that the probe has excellent mitochondrial targeting ability (R = 0.902). The probe can distinguish between Cys, homocysteine (Hcy) and glutathione (GSH), and can detect Cys specifically and quickly (100 s) to ensure accurate quantitative analysis of Cys changes in cells. More importantly, the probe confirms that ferroptosis inducing factors trigger thiol starvation in mitochondria, which helps to gain a deeper understanding of the physiological and pathological functions related to Cys and ferroptosis.

2.
BMC Urol ; 24(1): 113, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807082

RESUMEN

BACKGROUND: Hemorrhage is a common complication of nephrostomy and percutaneous nephrolithotripsy, and it is caused by surgical factors. Here we report a rare case of hemorrhage caused by sepsis-related coagulation dysfunction. CASE PRESENTATION: A 72-years-old male patient with bilateral ureteral calculi accompanied by hydronephrosis and renal insufficiency developed sepsis and hemorrhage on the third day after bilateral nephrostomy. After vascular injury was excluded by DSA, the hemorrhage was considered to be sepsis-associated coagulopathy(SAC/SIC), finally the patient recovered well after active symptomatic treatment. CONCLUSIONS: In patients with sepsis and hemorrhage, SAC/SIC cannot be excluded even if coagulation function is slightly abnormal after surgical factors are excluded. For urologists who may encounter similar cases in their general urology practice, it is important to be aware of these unusual causes of hemorrhage.


Asunto(s)
Trastornos de la Coagulación Sanguínea , Nefrostomía Percutánea , Sepsis , Humanos , Masculino , Anciano , Sepsis/etiología , Nefrostomía Percutánea/efectos adversos , Trastornos de la Coagulación Sanguínea/etiología , Hemorragia Posoperatoria/etiología
3.
Signal Transduct Target Ther ; 8(1): 344, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37696816

RESUMEN

Liver sinusoidal endothelial cells (LSECs) play a pivotal role in maintaining liver homeostasis and influencing the pathological processes of various liver diseases. However, neither LSEC-specific hallmark genes nor a LSEC promoter-driven Cre mouse line has been introduced before, which largely restricts the study of liver diseases with vascular disorders. To explore LSEC-specific hallmark genes, we compared the top 50 marker genes between liver endothelial cells (ECs) and liver capillary ECs and identified 18 overlapping genes. After excluding globally expressed genes and those with low expression percentages, we narrowed our focus to two final candidates: Oit3 and Dnase1l3. Through single-cell RNA sequencing (scRNA-seq) and analysis of the NCBI database, we confirmed the extrahepatic expression of Dnase1l3. The paired-cell sequencing data further demonstrated that Oit3 was predominantly expressed in the midlobular liver ECs. Subsequently, we constructed inducible Oit3-CreERT2 transgenic mice, which were further crossed with ROSA26-tdTomato mice. Microscopy validated that the established Oit3-CreERT2-tdTomato mice exhibited significant fluorescence in the liver rather than in other organs. The staining analysis confirmed the colocalization of tdTomato and EC markers. Ex-vivo experiments further confirmed that isolated tdTomato+ cells exhibited well-differentiated fenestrae and highly expressed EC markers, confirming their identity as LSECs. Overall, Oit3 is a promising hallmark gene for tracing LSECs. The establishment of Oit3-CreERT2-tdTomato mice provides a valuable model for studying the complexities of LSECs in liver diseases.


Asunto(s)
Células Endoteliales , Hígado , Animales , Ratones , Hepatocitos , Bases de Datos Factuales , Homeostasis , Ratones Transgénicos , Endodesoxirribonucleasas
4.
J Clin Invest ; 133(20)2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37607001

RESUMEN

Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Células Endoteliales/metabolismo , Transcripción Genética , ARN Polimerasa I/genética , Neoplasias/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ARN/genética
5.
Lasers Med Sci ; 38(1): 179, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37552377

RESUMEN

Melasma is a common, relapsing, multifactorial disease for which the treatment decision remains extremely difficult. This study was designed to compare the efficacy and safety of the combination of tranexamic acid (TA) injection and electro-optical synergy (ELOS) versus TA injection alone in treating melasma. A retrospective study was undertaken for patients with facial epidermal or mixed-type melasma to compare clinical data between 15 patients receiving a combination regimen and 15 patients with TA injection only. The study administered TA through intravenous injection to the combination group (twice weekly for 12 weeks) followed by ELOS therapy (once a month for three times). The TA group, on the other hand, received only TA injection (twice weekly for 12 weeks). The evaluation of clinical effectiveness was based on comparing the Melasma Area Severity Index (MASI) scores before and one month after treatment (at 4 months). The Physician Global Assessment (PGA) and Patient satisfaction were documented, and adverse reactions were recorded. All patients were followed up for one year to observe the relapse. After treatment, the MASI scores and melasma severity were significantly reduced in both groups. The combination group showed better efficacy than the TA only group (P < 0.05). The Physician Global Assessment (PGA) and Patient satisfaction showed superior efficacies of the combination group. No significant difference was observed between the two groups in terms of treatment-related side effects. Both groups experienced a certain degree of recurrence during the one-year follow-up, but the TA only group had a significantly higher recurrence rate than the combination group (P < 0.01). Together, the combination of TA injection and ELOS is a safe and effective treatment strategy for melasma and should be promoted.


Asunto(s)
Melanosis , Ácido Tranexámico , Humanos , Ácido Tranexámico/efectos adversos , Estudios Retrospectivos , Resultado del Tratamiento , Satisfacción del Paciente , Melanosis/tratamiento farmacológico
6.
MedComm (2020) ; 4(5): e346, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37614965

RESUMEN

Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.

7.
Dig Liver Dis ; 55(12): 1699-1704, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37316366

RESUMEN

This study evaluated the efficacy and safety of three-dimensional printing model-assisted percutaneous transhepatic one-step biliary fistulation (PTOBF) combined with rigid choledochoscopy for intrahepatic bile duct stones in patients with type I bile duct classification. The clinical data of 63 patients with a type I intrahepatic bile duct were reviewed from January 2019 to January 2023; 30 patients who underwent 3D printed model-assisted PTOBF combined with rigid choledochoscopy composed the experimental group and 33 patients who underwent simple PTOBF combined with rigid choledochoscopy composed the control group. Six indicators, including one-stage operation time and clearance rate, final removal rate, bleeding volume, channel size and complications, were observed and analyzed in the two groups. The one-stage and final removal rate in the experimental group was higher than that in the control group (P = 0.034, P = 0.014 versus control group). The time of one-stage operation, bleeding volume, and incidence of complications in the experimental group were significantly lower than those in the control group (P < 0.001, P = 0.039, P = 0.026 versus control group). Compared with simple PTOBF combined with rigid choledochoscopy, 3D printed model-assisted PTOBF combined with rigid choledochoscopy is a safer and more effective method for treating intrahepatic bile duct stones.


Asunto(s)
Laparoscopía , Humanos , Laparoscopía/métodos , Conductos Biliares Intrahepáticos/cirugía , Incidencia , Tempo Operativo
8.
Int J Biol Sci ; 19(6): 1941-1954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063432

RESUMEN

Rationale: Macrophages play a central role in the development and progression of nonalcoholic fatty liver disease (NAFLD). Studies have shown that Notch signaling mediated by transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBP-J), is implicated in macrophage activation and plasticity. Naturally, we asked whether Notch signaling in macrophages plays a role in NAFLD, whether regulating Notch signaling in macrophages could serve as a therapeutic strategy to treat NAFLD. Methods: Immunofluorescence staining was used to detect the changes of macrophage Notch signaling in the livers of human patients with NAFLD and choline deficient amino acid-defined (CDAA) diet-fed mice. Lyz2-Cre RBP-Jflox or wild-type C57BL/6 male mice were fed with CDAA or high fat diet (HFD) to induce experimental steatohepatitis or steatosis, respectively. Liver histology examinations were performed using hematoxylin-eosin (H&E), Oil Red O staining, Sirius red staining and immunohistochemistry staining for F4/80, Col1α1 and αSMA. The expression of inflammatory factors, fibrosis or lipid metabolism associated genes were evaluated by quantitative reverse transcription (qRT)-PCR, Western blot or enzyme-linked immunosorbent assay (ELISA). The mRNA expression of liver samples was profiled by using RNA-seq. A hairpin-type decoy oligodeoxynucleotides (ODNs) for transcription factor RBP-J was loaded into bEnd.3-derived exosomes by electroporating. Mice with experimental NAFLD were treated with exosomes loading RBP-J decoy ODNs via tail vein injection. In vivo distribution of exosomes was analyzed by fluorescence labeling and imaging. Results: The results showed that Notch signaling was activated in hepatic macrophages in human with NAFLD or in CDAA-fed mice. Myeloid-specific RBP-J deficiency decreased the expression of inflammatory factors interleukin-1 beta (IL1ß) and tumor necrosis factor alpha (TNFα), attenuated experimental steatohepatitis in mice. Furthermore, we found that Notch blockade attenuated lipid accumulation in hepatocytes by inhibiting the expression of IL1ß and TNFα in macrophages in vitro. Meanwhile, we observed that tail vein-injected exosomes were mainly taken up by hepatic macrophages in mice with steatohepatitis. RBP-J decoy ODNs delivered by exosomes could efficiently inhibit Notch signaling in hepatic macrophages in vivo and ameliorate steatohepatitis or steatosis in CDAA or HFD mice, respectively. Conclusions: Combined, macrophage RBP-J promotes the progression of NAFLD at least partially through regulating the expression of pro-inflammatory cytokines IL1ß and TNFα. Infusion of exosomes loaded with RBP-J decoy ODNs might be a promising therapy to treat NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Factores de Transcripción/metabolismo
10.
Nat Aging ; 3(3): 258-274, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37118422

RESUMEN

Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Masculino , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Inflamación , Endotelio/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(12): e2217254120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917671

RESUMEN

The potentiation of antibiotics is a promising strategy for combatting antibiotic-resistant/tolerant bacteria. Herein, we report that a 5-min sublethal heat shock enhances the bactericidal actions of aminoglycoside antibiotics by six orders of magnitude against both exponential- and stationary-phase Escherichia coli. This combined treatment also effectively kills various E. coli persisters, E. coli clinical isolates, and numerous gram-negative but not gram-positive bacteria and enables aminoglycosides at 5% of minimum inhibitory concentrations to eradicate multidrug-resistant pathogens Acinetobacter baumannii and Klebsiella pneumoniae. Mechanistically, the potentiation is achieved comprehensively by heat shock-enhanced proton motive force that thus promotes the bacterial uptake of aminoglycosides, as well as by increasing irreversible protein aggregation and reactive oxygen species that further augment the downstream lethality of aminoglycosides. Consistently, protonophores, chemical chaperones, antioxidants, and anaerobic culturing abolish heat shock-enhanced aminoglycoside lethality. We also demonstrate as a proof of concept that infrared irradiation- or photothermal nanosphere-induced thermal treatments potentiate aminoglycoside killing of Pseudomonas aeruginosa in a mouse acute skin wound model. Our study advances the understanding of the mechanism of actions of aminoglycosides and demonstrates a high potential for thermal ablation in curing bacterial infections when combined with aminoglycosides.


Asunto(s)
Aminoglicósidos , Antibacterianos , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/química , Aminoglicósidos/farmacología , Aminoglicósidos/química , Especies Reactivas de Oxígeno/farmacología , Agregado de Proteínas , Escherichia coli , Bacterias Gramnegativas , Bacterias , Respuesta al Choque Térmico , Pruebas de Sensibilidad Microbiana
13.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782128

RESUMEN

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Asunto(s)
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Protoplasma ; 260(2): 483-495, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35792983

RESUMEN

These YABBY genes are transcription factors (TFs) that play crucial roles in various developmental processes in plants. There is no comprehensive characterization of YABBY genes in a valuable Chinese orchid herb, Dendrobium officinale. In this study, a total of nine YABBY genes were identified in the D. officinale genome. These YABBY genes were divided into four subfamilies: CRC/DL, FIL, INO, and YAB2. Expression pattern analyses showed that eight of the YABBY genes were strongly expressed in reproductive organs (flower buds) but weakly expressed in vegetative organs (roots, leaves, and stems). DoYAB1, DoYAB5, DoDL1, and DoDL3 were abundant in the small flower bud stage, while DoDL2 showed no changes throughout flower development. In addition, DoDL1-3 genes were strongly expressed in the column, tenfold more than in sepals, petals, and the lip. DoYAB1 from the FIL subfamily, DoYAB2 from the YAB2 subfamily, DoYAB3 from the INO subfamily, and DoDL2 and DoDL3 from the CRC/DL subfamily were selected for further analyses. Subcellular localization analysis showed that DoYAB1-3, DoDL2, and DoDL3 were localized in the nucleus. DoYAB2 and DoYAB3 interacted strongly with DoWOX2 and DoWOX4, while DoYAB1 showed a weak interaction with DoWOX4. These results reveal a regulatory network involving YABBY and WOX proteins in D. officinale. Our data provide clues to understanding the role of YABBY genes in the regulation of flower development in this orchid and shed additional light on the function of YABBY genes in plants.


Asunto(s)
Dendrobium , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética
15.
Mol Nutr Food Res ; 67(8): e2200821, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36573265

RESUMEN

SCOPE: Existing research suggests that (-)-epigallocatechin-3-gallate (EGCG), which is a natural tea catechin active substance, can protect against liver injury. However, its mechanism for hepatic encephalopathy (HE) treatment is still unclear. In this study, the role of EGCG in the amelioration of HE rats and the effect on the microbiota-gut-liver axis are mainly analyzed. METHODS AND RESULTS: Thioacetamide (TAA) is employed to induce the HE model in rats. The results of open field test show that EGCG restores locomotor activity and exploratory behavior. Histological and biochemical results demonstrate that EGCG ameliorates brain and liver damage, decreases the expression of pro-inflammatory cytokines, and increases the activity of antioxidant enzymes. Meanwhile, EGCG modulates the Nrf2 pathway and TLR4/NF-κB pathway to mitigate TAA-induced oxidative stress and inflammatory responses. Immunohistochemistry reveals protection of the intestinal barrier by EGCG upregulating the expression of occludin and zonula occludens-1. Furthermore, serum levels of ammonia and LPS are reduced. 16S rRNA analysis shows that EGCG treatment increases the abundance of beneficial bacteria (e.g., Bifidobacterium, Lactobacillus, and Limosilactobacillus). CONCLUSION: The above results reveal that EGCG has anti-oxidative stress and anti-inflammatory effects, and ameliorates the condition through the microbiota-gut-liver axis, with potential for the treatment of HE.


Asunto(s)
Catequina , Microbioma Gastrointestinal , Encefalopatía Hepática , Ratas , Animales , Catequina/farmacología , Encefalopatía Hepática/tratamiento farmacológico , Tioacetamida/toxicidad , Té/química , ARN Ribosómico 16S , Antioxidantes/farmacología
16.
Front Immunol ; 14: 1294677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235128

RESUMEN

Background: Hepatocellular carcinoma (HCC) is a malignant tumor with a high rate of recurrence and m metastasis that does not respond well to current therapies and has a very poor prognosis. Disulfidptosis is a novel mode of cell death that has been analyzed as a novel therapeutic target for HCC cells. Methods: This study integrated bulk ribonucleic acid (RNA) sequencing datasets, spatial transcriptomics (ST), and single-cell RNA sequencing to explore the landscape of disulfidptosis and the immune microenvironment of HCC cells. Results: We developed a novel model to predict the prognosis of patients with HCC based on disulfidptosis. The model has good stability, applicability, and prognostic and immune response prediction abilities. N-myc downregulated gene1 (NDRG1) may contribute to poor prognosis by affecting macrophage differentiation, thus allowing HCC cells to evade the immune system. Conclusion: Our study explores the disulfidptosis of HCC cells through multi-omics and establishes a new putative model that explores possible targets for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Muerte Celular , Línea Celular , Inmunoterapia , Microambiente Tumoral
17.
Ann Transl Med ; 10(21): 1172, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36467351

RESUMEN

Background: Obesity, which results from a caloric intake and energy expenditure imbalance, is highly prevalent worldwide. Cathepsin S (CTSS), which is a cysteine protease, is elevated in obesity and may regulate a variety of physiological processes. This study sought to investigate the functional role of CTSS in obesity. Methods: Mice were administrated 60 mg/kg of RO5444101 in vivo and fed a high-fat diet (HFD) to induce obesity. The weights of the mice fed a normal-chow diet and a HFD were measured. The expression levels of total triglycerides (TG), total cholesterol (TC), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and monocyte chemoattractant protein-1 (MCP-1) were assessed using appropriate corresponding assay kits. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to estimate the messenger ribonucleic acid (mRNA) expression of CTSS in the serum and the release of M1- and M2-type cytokines, and western blot was used to measure the phosphorylated-nuclear factor kappaB (NF-kappaB) p65 and NF-κB p65 proteins. The mRNA and protein expressions of sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FASN), leptin, and adiponectin were also evaluated by RT-qPCR and western blot. Further, hematoxylin and eosin (H&E), immunohistochemical, and red oil O staining were employed to detect the pathological changes of the epididymal white adipose tissue (eWAT), the macrophage infiltration in the eWAT, and lipid accumulation, respectively. Results: We found that CTSS was elevated in the plasma, visceral adipose, and liver tissues of the obese mice. After the administration of 60 mg/kg of RO5444101, the weight of the obese mice decreased, insulin resistance was inhibited, and adipocyte formation was suppressed. The CTSS inhibitor also decreased the level of macrophage infiltration in the eWAT, MCP-1 expression, and the release of M1- and M2-type cytokines in the HFD-induced mice. The CTSS inhibitor appeared to improve the hepatic function parameters and lipid accumulation of the HFD-induced mice. The CTSS inhibitor also appeared to improve the inflammatory damage in the HFD-induced mice. Conclusions: CTSS inhibitor helped to protect against HFD-induced adipogenesis, inflammatory infiltration, and hepatic lipid accumulation in obese mice.

18.
Prog Neurobiol ; 219: 102352, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36089108

RESUMEN

A few developmental genes remain persistently expressed in the adult stage, whilst their potential functions in the mature brain remain underappreciated. Here, we report the unexpected importance of Celsr2, a core Planar cell polarity (PCP) component, in maintaining the structural and functional integrity of adult neocortex. Celsr2 is highly expressed during development and remains expressed in adult neocortex. In vivo synaptic imaging in Celsr2 deficient mice revealed alterations in spinogenesis and reduced neuronal calcium activities, which are associated with impaired motor learning. These phenotypes were accompanied with anomalies of both postsynaptic organization and presynaptic vesicles. Knockout of Celsr2 in adult mice recapitulated those features, further supporting the role of Celsr2 in maintaining the integrity of mature cortex. In sum, our data identify previously unrecognized roles of Celsr2 in the maintenance of synaptic function and motor learning in adulthood.


Asunto(s)
Polaridad Celular , Sinapsis , Animales , Ratones , Ratones Noqueados , Sinapsis/fisiología , Neuronas , Encéfalo , Plasticidad Neuronal/fisiología , Cadherinas
19.
Front Surg ; 9: 934183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35983555

RESUMEN

This study aimed to establish three-dimensional models of the biliary tract of Chinese people using the Hisense computer-aided surgery (CAS) system and to explore the branching patterns and variation types of the biliary system under the study of 3D reconstruction of the biliary tract. Three-dimensional models of the biliary tract were reconstructed in 50 patients using the Hisense CAS system. The branching patterns of intrahepatic bile ducts were observed. The biliary tract was classified according to the confluence of the right posterior sectoral duct (RPSD), right anterior sectoral duct (RASD) and left hepatic duct (LHD), and the presence or absence of accessory hepatic ducts. The 3D models of the bile ducts were successfully reconstructed in 50 Chinese patients. The branching patterns of the bile ducts were classified into seven types. The anatomy of the bile ducts was typical in 54% of cases (n = 27), showed triple confluence in 10% (n = 5), and crossover anomaly in 14% (n = 7), which means anomalous drainage of the RPSD into the LHD, anomalous drainage of the RPSD into the common hepatic duct (CHD) in 10% (n = 5), anomalous drainage of the RPSD into the cystic duct (CD) in 2% (n = 1), absence of left main hepatic duct in 1% (n = 1), presence of accessory duct in 8% (n = 4). Among them, there were three cases of accessory hepatic ducts coexisting with other variation types. By using the Hisense CAS system to establish 3D models of the biliary tract of the Chinese people, we established the branching model of the second-order bile ducts, which has important value for the classification of the biliary system and its variation types.

20.
Mol Psychiatry ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35789199

RESUMEN

Social recognition and memory are critical for survival. The hippocampus serves as a central neural substrate underlying the dynamic coding and transmission of social information. Yet the molecular mechanisms regulating social memory integrity in hippocampus remain unelucidated. Here we report unexpected roles of Celsr2, an atypical cadherin, in regulating hippocampal synaptic plasticity and social memory in mice. Celsr2-deficient mice exhibited defective social memory, with rather intact levels of sociability. In vivo fiber photometry recordings disclosed decreased neural activity of dorsal CA1 pyramidal neuron in Celsr2 mutants performing social memory task. Celsr2 deficiency led to selective impairment in NMDAR but not AMPAR-mediated synaptic transmission, and to neuronal hypoactivity in dorsal CA1. Those activity changes were accompanied with exuberant apical dendrites and immaturity of spines of CA1 pyramidal neurons. Strikingly, knockdown of Celsr2 in adult hippocampus recapitulated the behavioral and cellular changes observed in knockout mice. Restoring NMDAR transmission or CA1 neuronal activities rescued social memory deficits. Collectively, these results show a critical role of Celsr2 in orchestrating dorsal hippocampal NMDAR function, dendritic and spine homeostasis, and social memory in adulthood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...