Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(26): e2314098, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38362999

RESUMEN

As the photovoltaic field endeavors to transition perovskite solar cells (PSCs) to industrial applications, inverted PSCs, which incorporate fullerene as electron transport layers, have emerged as a compelling choice due to their augmented stability and cost-effectiveness. However, these attributes suffer from performance issues stemming from suboptimal electrical characteristics at the perovskite/fullerene interface. To surmount these hurdles, an interface bridging strategy (IBS) is proposed to attenuate the interface energy loss and enhance the interfacial stability by designing a series of A-D-A type perylene monoimide (PMI) derivatives with multifaceted advantages. In addition to passivating defects, the IBS plays a crucial role in facilitating the binding between perovskite and fullerene, thereby enhancing interface coupling and importantly, improving the formation of fullerene films. The PMI derivatives, functioning as bridges, serve as a protective barrier to enhance the device stability. Consequently, the IBS enables a remarkable efficiency of 24.62% for lab-scale PSCs and an efficiency of 18.73% for perovskite solar modules craft on 156 × 156 mm2 substrates. The obtained efficiencies represent some of the highest recorded for fullerene-based devices, showcasing significant progress in designing interfacial molecules at the perovskite/fullerene interface and offering a promising path to enhance the commercial viability of PSCs.

2.
PLoS One ; 17(11): e0277842, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36445919

RESUMEN

Based on China's transaction-level trade data and firm-level production data during the period 2000-2006, this paper firstly estimates the export cutoff productivity by applying non-parametric ROC method. The results are as follows. First, under the full sample, the export cutoff productivity is 7.051. Second, the export cutoff productivity of home enterprises is relatively low, and that of foreign enterprises is relatively high. Third, the export thresholds of capital-intensive and technology-intensive industries are relatively high, while that of labor-intensive industry is relatively low. Fourth, the export threshold of western provinces is relatively high, followed by central provinces and eastern provinces. In addition, this paper investigates the dynamic change of export threshold. The result indicates that the evolution of export threshold is generally a horizontal S-shape during the sample period, and after China's accession to WTO in 2001, it is an inverted U-shape.


Asunto(s)
Pueblo Asiatico , Industrias , Humanos , Tecnología , Internacionalidad , China
3.
Adv Mater ; 32(47): e2004979, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079444

RESUMEN

Slot-die coating holds advantages over other large-scale technologies thanks to its potential for well-controlled, high-throughput, continuous roll-to-roll fabrication. Unfortunately, it is challenging to control thin.film uniformity over a large area while maintaining crystallization quality. Herein, by using a high-pressure nitrogen-extraction (HPNE) strategy to assist crystallization, a wide processing window in the well-controlled printing process for preparing high-quality perovskites is achieved. The yellow-phase perovskite generated by the HPNE acts as a crucial intermediate phase to produce large-area high-quality perovskite film. Furthermore, an ionic liquid is developed to passivate the perovskite surface to reduce surface defect density and to suppress carrier recombination, resulting in significantly increased efficiency to 22.7%, the highest for large-area fabrication. The strategies are successfully extended to large-area device fabrication, making it possible to produce a 40 × 40 mm2 module with stabilized PCE as high as 19.4%, the highest-efficiency for a large-area module to date.

4.
Adv Mater ; 31(50): e1902037, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31304651

RESUMEN

Metal halide perovskite solar cells (PVSCs) have revolutionized photovoltaics since the first prototype in 2009, and up to now the highest efficiency has soared to 24.2%, which is on par with commercial thin film cells and not far from monocrystalline silicon solar cells. Optimizing device performance and improving stability have always been the research highlight of PVSCs. Metal cations are introduced into perovskites to further optimize the quality, and this strategy is showing a vigorous development trend. Here, the progress of research into metal cations for PVSCs is discussed by focusing on the position of the cations in perovskites, the modulation of the film quality, and the influence on the photovoltaic performance. Metal cations are considered in the order of alkali cations, alkaline earth cations, then metal cations in the ds and d regions, and ultimately trivalent cations (p- and f-block metal cations) according to the periodic table of elements. Finally, this work is summarized and some relevant issues are discussed.

5.
Nanoscale ; 11(17): 8160-8169, 2019 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30723852

RESUMEN

Exploration of effective metal/support combinations and new fabrication approaches is attractive in the catalytic oxidation of HCHO. In this study, we proposed graphitic carbon nitride (g-C3N4) as a non-metal oxide based support to co-load Pt and MnOx through room-temperature photodeposition and in turn applied for HCHO oxidation. Here, Pt was the active component, while MnOx was the cocatalyst to compensate the shortage of active oxygen on g-C3N4. g-C3N4 was found as a promising support for the high dispersion of Pt and MnOx. Well dispersed Pt nanoparticles with an average diameter of 1.8 nm were obtained, which were highly favorable for the loading of MnOx as MnOx-Pt/g-C3N4. Catalytic performance results indicated that the limited HCHO conversion over g-C3N4 and Pt/g-C3N4 was significantly promoted with the introduction of MnOx, with an optimum MnOx amount of 3.0 wt%. The developed catalysts remained highly stable for 30 h. The enhanced catalytic activity of MnOx-Pt/g-C3N4 was due to the increased number of active oxygen species with the introduction of MnOx and the efficient transfer of electrons from g-C3N4 to Pt. Compared to the traditional impregnation, photodeposition process avoids the application of H2 and high temperatures, scoring in favor of its green and safe nature. This study can concomitantly provide a new way for the design and fabrication of a non-metal oxide based support for the efficient HCHO catalytic oxidation and the application of the photocatalytic process in catalyst fabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA