Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1372518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800486

RESUMEN

Background: Aging has always been considered as a risk factor for neurodegenerative diseases, but there are individual differences and its mechanism is not yet clear. Epigenetics may unveil the relationship between aging and neurodegenerative diseases. Methods: Our study employed a bidirectional two-sample Mendelian randomization (MR) design to assess the potential causal association between epigenetic aging and neurodegenerative diseases. We utilized publicly available summary datasets from several genome-wide association studies (GWAS). Our investigation focused on multiple measures of epigenetic age as potential exposures and outcomes, while the occurrence of neurodegenerative diseases served as potential exposures and outcomes. Sensitivity analyses confirmed the accuracy of the results. Results: The results show a significant decrease in risk of Parkinson's disease with GrimAge (OR = 0.8862, 95% CI 0.7914-0.9924, p = 0.03638). Additionally, we identified that HannumAge was linked to an increased risk of Multiple Sclerosis (OR = 1.0707, 95% CI 1.0056-1.1401, p = 0.03295). Furthermore, we also found that estimated plasminogen activator inhibitor-1(PAI-1) levels demonstrated an increased risk for Alzheimer's disease (OR = 1.0001, 95% CI 1.0000-1.0002, p = 0.04425). Beyond that, we did not observe any causal associations between epigenetic age and neurodegenerative diseases risk. Conclusion: The findings firstly provide evidence for causal association of epigenetic aging and neurodegenerative diseases. Exploring neurodegenerative diseases from an epigenetic perspective may contribute to diagnosis, prognosis, and treatment of neurodegenerative diseases.


Asunto(s)
Envejecimiento , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedades Neurodegenerativas , Humanos , Envejecimiento/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/epidemiología , Predisposición Genética a la Enfermedad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología , Inhibidor 1 de Activador Plasminogénico/genética , Factores de Riesgo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología
2.
Front Neurosci ; 18: 1330594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38426019

RESUMEN

Background: Many studies have investigated the efficacy of acupuncture in treating depression, but the mechanism of acupuncture for depression is still controversial and there is a lack of meta-analysis of mechanisms. Consequently, we investigated acupuncture's efficacy and mechanism of depression. Methods: We searched the Cochrane Library, PubMed, EMBASE, Web of Science. The SYRCLE Risk of Bias Tool was used to assess bias risk. Meta-analysis was performed using Stata 15.0 for indicators of depression mechanisms, body weight and behavioral tests. Results: A total of 22 studies with 497 animals with depressive-like behaviors were included. Meta-analysis showed that acupuncture significantly increased BDNF [SMD = 2.40, 95% CI (1.33, 3.46); I2 = 86.6%], 5-HT [SMD = 2.28, 95% CI (1.08, 3.47); I2 = 87.7%] compared to the control group (p < 0.05), and significantly reduced IL-1ß [SMD = -2.33, 95% CI (-3.43, -1.23); I2 = 69.6%], CORT [SMD = -2.81, 95% CI (-4.74, -0.87); I2 = 86.8%] (p < 0.05). Acupuncture improved body weight [SMD = 1.35, 95% CI (0.58, 2.11); I2 = 84.5%], forced swimming test [SMD = -1.89, 95% CI (-2.55, -1.24); I2 = 76.3%], open field test (crossing number [SMD = 3.08, 95% CI (1.98, 4.17); I2 = 86.7%], rearing number [SMD = 2.53, 95% CI (1.49, 3.57); I2 = 87.0%]) (p < 0.05) compared to the control group. Conclusion: Acupuncture may treat animals of depressive-like behaviors by regulating neurotrophic factors, neurotransmitters, inflammatory cytokines, neuroendocrine system. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023403318, identifier (CRD42023403318).

3.
Zhongguo Zhen Jiu ; 43(10): 1165-8, 2023 Oct 12.
Artículo en Chino | MEDLINE | ID: mdl-37802523

RESUMEN

The paper introduces professor ZHUANG Li-xing's clinical experience in treatment of dyskinesia of Parkinson's disease with acupuncture at triple-acupoint prescription. In pathogenesis, dyskinesia of Parkinson's disease refers to yang deficiency and disturbing wind. In treatment, acupuncture focuses on warming yang, promoting the circulation of the governor vessel, regulating the spirit and stopping trembling; and Baihui (GV 20), Suliao (GV 25) and Dingchanxue (Extra) are selected to be "trembling relief needling". In combination with Jin's three needling, named "three-trembling needling" "three-governor-vessel needling" and "three-spasm needling", the triple-acupoint prescription is composed. To ensure the favorable therapeutic effect, this prescription is modified according to the symptoms and the specific techniques of acupuncture are combined such as conducting qi, harmonizing yin and yang, and manipulating gently for reinforcing and reducing.


Asunto(s)
Terapia por Acupuntura , Acupuntura , Discinesias , Enfermedad de Parkinson , Humanos , Puntos de Acupuntura , Enfermedad de Parkinson/terapia , Terapia por Acupuntura/métodos
4.
J Integr Neurosci ; 22(2): 41, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992577

RESUMEN

BACKGROUND: Fo-Shou-San (FSS) is a traditional Chinese medicine (TCM) decoction that can effectively treat vascular dementia (VD). In the face of unclear pharmacological mechanisms, we set out to validate that FSS treats chronic cerebral hypoperfusion (CCH)-induced cognitive impairment in mice. METHODS: CCH animal model caused by permanent right unilateral common carotid arteries occlusion (rUCCAO) was established to verify that FSS could treat subcortical ischemic vascular dementia (SIVD). We performed novel object recognition test and Morris water maze test, observed morphological changes via HE and Nissl staining, and detected hippocampus apoptosis by TUNEL staining and oxidative stress by biochemical assays. Ferroptosis-related markers and NRF2/HO-1 signaling-related expressions were examined via qPCR and immunofluorescence staining. RESULTS: We found that FSS ameliorated cognitive disorders, and lessened oxidative stress by decreasing MDA and GSH-PX while increasing the reduced glutathione (GSH)/oxidized glutathione disulfide (GSSG) ratio, which are associated with ferroptosis. Additionally, FSS reduced expression of SLC7A11, GPX4, ROX and 4HNE, as vital markers of ferroptosis. Further, FSS regulated NRF2/HO-1 signaling by downregulating NRF2 and HO-1. CONCLUSIONS: Our study suggests that FSS may ameliorate chronic cerebral hypoperfusion-induced cognitive deficits through regulation of the NRF2/HO-1 pathway against ferroptosis. Taken together, our study highlights the neuroprotective efficacy of FSS.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Demencia Vascular , Ferroptosis , Animales , Ratones , Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Factor 2 Relacionado con NF-E2/metabolismo
5.
Artículo en Inglés | MEDLINE | ID: mdl-36310618

RESUMEN

Objective: Traditional Chinese medicine formula Kai-Xin-San (KXS) is used to treat psychiatric disorders, especially in anxiety and depression. However, the precise molecular mechanism of action remains unclear. In this study, we investigated the antidepressant effect of KXS on inhibiting inflammation and oxidative stress in corticosterone (CORT)-induced depression. Methods: The therapeutic efficacy of KXS was evaluated in a mouse model of depression induced by CORT. Behavioral tests were conducted to evaluate the effectiveness of KXS in treating depressive-like behavior. Nissl staining and ß-galactosidase staining were used to assess the effects of KXS on neuronal injury in depressed mice. To screen key potential therapeutic targets of KXS, transcriptome sequences and data analysis were performed. Then, Iba1 immunofluorescence staining and their relative inflammatory factors mRNA expression were conducted to assess the effect of KXS in inhibiting microglial inflammation activation response. Concurrently, the measurement of 4-Hydroxynonenal (4-HNE) immunohistochemistry staining, malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were performed to evaluate the effect of KXS on anti-oxidative stress of depression in vivo. Besides, nitric oxide (NO), relative inflammatory factors mRNA expression, JC-1 staining, and ROS were used to evaluate the effect of KXS by lipopolysaccharide (LPS)/interferon-gamma (IFNγ)-induced BV2 cells. Results: KXS significantly relieved the depressive-like symptoms induced by CORT, as well as ameliorating the neuronal damage, which decreased microglia inflammatory activation response of IL-1ß, IL-6, and tumor necrosis factor α (TNFα) in vivo or in vitro too. Transcriptome Sequencing and Data Analysis showed that KXS mainly by regulating immune system and transduction pathways decreased CORT-induced depression in mice. And showed that there were 19 Principal components and 10 genes in the main regulatory position with the strongest correlation in depression mice. Meanwhile, KXS effectively decreased senescence, the expression of 4-HNE, MDA content, and the production of ROS, while increasing the SOD activity in CORT-induced mice. Besides, KXS significantly reversed the mitochondrial membrane potential loss and excessive ROS production in LPS/IFNγ-induced BV2 cells. Conclusion: Our research suggested that KXS might protect depressed mice against CORT-induced neuronal injury by inhibiting microglia activation and oxidative stress.

6.
Drug Des Devel Ther ; 16: 2981-2993, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105321

RESUMEN

Introduction: Breast cancer (BC) is the leading female malignancy, with one million new cases diagnosed worldwide per year. However, the current treatment options for BC patients have difficulty achieving satisfactory efficacy. Ferroptosis is a new mode of regulated cell death that plays a key role in the inhibition of tumorigenesis. Levistilide A (LA), as an active compound extracted from Chuanxiong Rhizoma, might prevent the development of tumors by regulating the critical cellular processes of ferroptosis. Methods: In this study, the underlying mechanisms of LA on ferroptosis in BC were explored in vitro. The effect of LA on the viability and mitochondrial function of BC cells was determined. Moreover, the effect of LA on the expression levels of key molecules involved in ferroptosis and the nuclear factor erythroid-2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) signaling pathway was evaluated. Results: LA significantly reduced cell viability and damaged the mitochondrial structure and function of BC cells in a dose-dependent manner. Furthermore, LA treatment markedly enhanced reactive oxygen species (ROS)-induced ferroptosis by activating the Nrf2/HO-1 signaling pathway. Conclusion: These findings suggest that LA may be a potential lead compound for breast cancer therapy by inducing ferroptosis in tumor cells.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Hemo-Oxigenasa 1/metabolismo , Compuestos Heterocíclicos de Anillo en Puente , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal
7.
J Ethnopharmacol ; 283: 114717, 2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34627986

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiao-Tai-Wan (JTW) is a very famous traditional Chinese medicine formula for the treatment of psychiatric disorders, especially in anxiety, insomnia and depression. However, its molecular mechanism of treatment remains indistinct. AIM OF THE STUDY: We aimed to reveal the action mechanism of JTW on anti-depression via inhibiting microglia activation and pro-inflammatory response both in vivo and in vitro. MATERIAL AND METHODS: The corticosterone (CORT)-induced depression mouse model was used to evaluate the therapeutic efficacy of JTW. Behavioral tests (open field, elevated plus maze, tail suspension and forced swim test) were conducted to evaluate the effect of JTW on depressive-like behaviors. The levels of inflammatory factors and the concentration of neurotransmitters were detected by RT-qPCR or ELISA assays. Then three hippocampal tissue samples per group (Control, CORT, and JTW group) were sent for RNA sequencing (RNA-seq). Transcriptomics data analysis was used to screen the key potential therapeutic targets and signaling pathways of JTW. Based on 8 bioactive species of JTW by our previous study using High-performance liquid chromatography (HPLC) analysis, molecular docking analyses were used to predict the interaction of JTW-derived compounds and depression targets. Finally, the results of transcriptome and molecular docking analyses were combined to verify the targets, key pathways, and efficacy of JTW treatment in vivo and vitro. RESULTS: JTW ameliorated CORT-induced depressive-like behaviors, neuronal damage and enhanced the levels of monoamine neurotransmitters in the serum of mice. JTW also inhibited CORT-induced inflammatory activation of microglia and decreased the serum levels of interleukin- 6(IL-6) and interleukin- 1ß (IL-1ß) in vivo. Transcriptomic data analysis showed there were 10 key driver analysis (KDA) genes with the strongest correlation which JTW regulated in depression mice. Molecular docking analysis displayed bioactive compound Magnoflorine had the strongest binding force to the key gene colony-stimulating factor 1 receptor (CSF1R), which is the signaling microglia dependent upon for their survival. Meanwhile, CSF1R staining showed it was consistent with inflammatory activation of microglia. Our vitro experiment also showed JTW and CSF1R inhibitor significantly reduced lipopolysaccharide (LPS)/interferon-gamma (IFNÉ£)-induced inflammatory activation response in macrophage cells. CONCLUSIONS: Our study suggests that JTW might ameliorate CORT-induced neuronal damage in depression mice by inhibiting CSF1R mediated microglia activation and pro-inflammatory response.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Inflamación/tratamiento farmacológico , Animales , Animales no Consanguíneos , Conducta Animal/efectos de los fármacos , Corticosterona/toxicidad , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Simulación del Acoplamiento Molecular , Células RAW 264.7
8.
Int J Nanomedicine ; 16: 8049-8065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938072

RESUMEN

BACKGROUND: Intracerebral hemorrhage (ICH) is a form of severe stroke, the pathology of which is tied closely to a recently discovered form of programmed cell death known as ferroptosis. Curcumin (Cur) is a common phenolic compound extracted from the rhizome of Curcuma longa capable of hematoma volume and associated neurological damage in the context of ICH. Despite exhibiting therapeutic promise, the efficacy of Cur is challenged by its poor water solubility, limited oral bioavailability and inability to efficiently transit across the physiological barriers. Polymer-based nanoparticles (NPs) have widely been employed to aid in drug delivery efforts owing to their ideal biocompatibility and their ability to improve the bioavailability and pharmacokinetics of specific drugs of interest. METHODS: In this study, we encapsulated Cur in NPs (Cur-NPs) and explored the effect of these Cur-NPs to enhance Cur delivery both in vitro and in vivo. Furthermore, we evaluated the anti-ferroptosis effect of Cur-NPs in ICH model mice and erastin-treated HT22 murine hippocampal cells. RESULTS: The resultant Cur-NPs were spherical and exhibited a particle size of 127.31±2.73 nm, a PDI of 0.21±0.01 and a zeta potential of -0.25±0.02 mV. When applied to Madin Darby canine kidney (MDCK) cells in vitro, these Cur-NPs were nonspecifically internalized via multiple endocytic pathways, with plasma membrane microcapsules and clathrin-mediated uptake being the dominant mechanisms. Within cells, these NPs accumulated in lysosomes, endoplasmic reticulum and mitochondria. Cur-NPs were capable of passing through physiological barriers in a zebrafish model system. When administrated to C57BL/6 mice, they significantly improved Cur delivery to the brain. Most notably, when administered to ICH model mice, Cur-NPs achieved superior therapeutic outcomes relative to other treatments. In a final series of experiments, these Cur-NPs were shown to suppress erastin-induced ferroptosis in HT22 murine hippocampal cells. CONCLUSION: These Cur-NPs represent a promising means of improving Cur delivery to the brain and thereby better treating ICH.


Asunto(s)
Curcumina , Ferroptosis , Nanopartículas , Animales , Hemorragia Cerebral , Curcumina/farmacología , Perros , Sistemas de Liberación de Medicamentos , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Pez Cebra
9.
Front Psychiatry ; 12: 703516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413798

RESUMEN

Depression is a prevalent mental disease characterized by persistent low mood, lack of pleasure, and exhaustion. Acupoint catgut embedding (ACE) is a kind of modern acupuncture treatment, which has been widely used for the treatment of a variety of neuropsychiatric diseases. To investigate the effects and underlying mechanism of ACE on depression, in this study, we applied ACE treatment at the Baihui (GV20) and Dazhui (GV14) acupoints of corticosterone (CORT)-induced depression model mice. The results showed that ACE treatment significantly attenuated the behavioral deficits of depression model mice in the open field test (OFT), elevated-plus-maze test (EPMT), tail suspension test (TST), and forced swimming test (FST). Moreover, ACE treatment reduced the serum level of adreno-cortico-tropic-hormone (ACTH), enhanced the serum levels of 5-hydroxytryptamine (5-HT), and noradrenaline (NE). Furthermore, metabolomics analysis revealed that 23 differential metabolites in the brain of depression model mice were regulated by ACE treatment for its protective effect. These findings suggested that ACE treatment ameliorated depression-related manifestations in mice with depression through the attenuation of metabolic dysfunction in brain.

10.
Front Pharmacol ; 12: 629379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815110

RESUMEN

Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. To date, the exact etiology of ICH-induced brain injury is still unclear. Moreover, there is no effective treatment to delay or prevent disease progression currently. Increasing evidence suggests that ferroptosis plays a dominant role in the pathogenesis of ICH injury. Baicalin is a main active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has been reported to exhibit neuroprotective effects against ICH-induced brain injury as well as reduce iron deposition in multiple tissues. Therefore, in this study, we focused on the protective mechanisms of baicalin against ferroptosis caused by ICH using a hemin-induced in vitro model and a Type IV collagenase-induced in vivo model. Our results revealed that baicalin enhanced cell viability and suppressed ferroptosis in rat pheochromocytoma PC12 cells treated with hemin, erastin and RSL3. Importantly, baicalin showed anti-ferroptosis effect on primary cortical neurons (PCN). Furthermore, baicalin alleviated motor deficits and brain injury in ICH model mice through inhibiting ferroptosis. Additionally, baicalin existed no obvious toxicity towards the liver and kidney of mice. Evidently, ferroptosis is a key pathological feature of ICH and baicalin can prevent the development of ferroptosis in ICH. As such, baicalin is a potential therapeutic drug for ICH treatment.

11.
Nanoscale ; 13(6): 3827-3840, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33565555

RESUMEN

Intracerebral hemorrhage (ICH) is a neurological disorder resulting from the nontraumatic rupture of blood vessels in the brain. Ferroptosis is a newly identified form of programmed cell death, which is an important pathological feature of ICH injury. At present, the therapeutic efficacy of ICH treatment is far from satisfactory, so it is urgent to develop a safer and more effective method to treat ICH injury. Resveratrol (Res), a widely used nonflavonoid polyphenol compound, plays a neuroprotective role in many diseases. However, its poor oral bioavailability limits its clinical application in ICH. Polymer nanoparticles (NPs) are a commonly used drug delivery matrix material with good biocompatibility. To improve its bioavailability and accumulation in the brain, we used NPs to encapsulate Res. These spherical Res nanoparticles (Res-NPs) had a particle size of 297.57 ± 7.07 nm, a PDI of 0.23 ± 0.02 and a zeta potential of -5.45 ± 0.27 mV. They could be taken up by Madin-Darby canine kidney (MDCK) cells through a variety of nonspecific endocytosis mechanisms, mainly mediated by clathrin and plasma membrane microcapsules. After entering the cell, Res-NPs tend to accumulate in the endoplasmic reticulum and lysosomes. In a zebrafish model, we observed that Res-NPs could transport across physiological barriers. In a Sprague-Dawley (SD) rat model, we found that Res-NPs had more desirable improvements in Res accumulation within the plasma and brain. Moreover, we demonstrated that Res-NPs were able to inhibit ferroptosis induced by erastin in HT22 mouse hippocampal cells, which are commonly used in in vitro studies to examine neuronal differentiation and neurotoxicity implicated in brain injuries or neurological diseases. Finally, in an ICH mouse model, we confirmed that Res-NPs are a safer and effective treatment for ICH injury. Collectively, Res-NPs are effective to improve Res brain delivery and its therapeutic efficacy in ICH treatment.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Encéfalo , Hemorragia Cerebral/tratamiento farmacológico , Perros , Ratones , Ratas , Ratas Sprague-Dawley , Resveratrol
12.
Artículo en Inglés | MEDLINE | ID: mdl-32952591

RESUMEN

OBJECTIVE: Mind-body exercise may have potential benefits for cancer survivors according to previous studies. We performed a systematic review and meta-analysis to summarize the published evidence and evaluate the safety and efficacy of mind-body exercise on general quality of life (QOL) and symptom management in cancer survivors. METHODS: Four English language databases were systematically searched for existing randomized controlled trials (RCTs) of mind-body exercise in cancer survivors from database inception through October 23, 2019. Methodological quality was appraised with the Cochrane Risk of Bias tool. A meta-analysis of comparative effects was performed using the Review Manager v.5.3 software. RESULTS: Fifteen studies encompassing 1461 patients were included. Analysis results showed that mind-body exercise could have a statistically significant effect on the outcomes of physical fitness, fatigue, sleep quality, depression, anxiety, and BMI, while effects on general QOL and stress were not statistically significant (all p > 0.05). No serious adverse events were reported. CONCLUSIONS: The current evidence demonstrates that mind-body exercise is relatively safe and modestly effective for symptom management in cancer survivors. Furthermore, randomized trials with larger sample sizes and of higher methodological quality are needed to confirm these results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA