Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Biomed Pharmacother ; 176: 116807, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795644

RESUMEN

Metabolic syndrome (MetS) is a widespread and multifactorial disorder, and the study of its pathogenesis and treatment remains challenging. Autophagy, an intracellular degradation system that maintains cellular renewal and homeostasis, is essential for maintaining antimicrobial defense, preserving epithelial barrier integrity, promoting mucosal immune response, maintaining intestinal homeostasis, and regulating gut microbiota and microbial metabolites. Dysfunctional autophagy is implicated in the pathological mechanisms of MetS, involving insulin resistance (IR), chronic inflammation, oxidative stress, and endoplasmic reticulum (ER) stress, with IR being a predominant feature. The study of autophagy represents a valuable field of research with significant clinical implications for identifying autophagy-related signals, pathways, mechanisms, and treatment options for MetS. Given the multifactorial etiology and various potential risk factors, it is imperative to explore the interplay between autophagy and gut microbiota in MetS more thoroughly. This will facilitate the elucidation of new mechanisms underlying the crosstalk among autophagy, gut microbiota, and MetS, thereby providing new insights into the diagnosis and treatment of MetS.


Asunto(s)
Autofagia , Microbioma Gastrointestinal , Resistencia a la Insulina , Síndrome Metabólico , Autofagia/fisiología , Microbioma Gastrointestinal/fisiología , Síndrome Metabólico/microbiología , Síndrome Metabólico/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Animales , Transducción de Señal
2.
Heliyon ; 8(12): e12333, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36530927

RESUMEN

In terms of treatment, a particularly targeted drug is needed to combat the COVID-19 pandemic. Although there are currently no specific drugs for COVID-19, traditional Chinese medicine(TCM) is clearly effective. It is recommended that through data analysis and mining of TCM cases (expert experience) and population evidence (RCT and cohort studies), core prescriptions for various efficacy can be obtained. Starting from a multidimensional model of regulating immunity, improving inflammation, and protecting multiple organs, this paper constructs a multidimensional model of targeted drug discovery, integrating molecular, cellular, and animal efficacy evaluation. Through functional activity testing, biophysical detection of compound binding to target proteins, multidimensional pharmacodynamic evaluation systems of cells (Vero E6, Vero, Vero81, Huh7, and caca2) and animals (mice infected with the new coronavirus, rhesus macaques, and hamsters), the effectiveness of effective preparations was evaluated, and various efficacy effects including lung moisturizing, dehumidification and detoxification were obtained. Using modern technology, it is now possible to understand how the immune system is controlled, how inflammation is reduced, and how various organs are protected. Complete early drug characterization and finally obtain effective targeted TCM. This article provides a demonstration resource for the development of new drugs specifically for TCM.

3.
Front Pharmacol ; 13: 988175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483738

RESUMEN

The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.

4.
Gut Microbes ; 14(1): 2106103, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35921525

RESUMEN

How the gut microbiota is organized across space is postulated to influence microbial succession and its mutualistic relationships with the host. The lack of dynamic or perturbed abundance data poses considerable challenges for characterizing the spatial pattern of microbial interactions. We integrate allometric scaling theory, evolutionary game theory, and prey-predator theory into a unified framework under which quasi-dynamic microbial networks can be inferred from static abundance data. We illustrate that such networks can capture the full properties of microbial interactions, including causality, the sign of the causality, strength, and feedback loop, and are dynamically adaptive along spatial gradients, and context-specific, characterizing variability between individuals and within the same individual across time and space. We design and conduct a gut microbiota study to validate the model, characterizing key spatial determinants of the microbial differences between ulcerative colitis and healthy controls. Our model provides a sophisticated means of unraveling a complete atlas of how microbial interactions vary across space and quantifying causal relationships between such spatial variability and change in health state.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Humanos
5.
Front Endocrinol (Lausanne) ; 13: 799337, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370950

RESUMEN

Background: Diabetic retinopathy (DR), one of the commonest microvascular complications in diabetic patients, is featured by a series of fundus lesions. Conventional Western medicine therapies for DR are always with modest treatment outcome. This paper is to assess the ocular fundus signs, vision and safety of Chinese patent medicines (CPMs) as an add-on treatment for DR. Method: 7 electronic databases were searched to determine eligible trials. Randomized controlled trials (RCTs) of non-proliferative diabetic retinopathy (NPDR) in which the intervention group received CPMs combined with calcium dobesilate (CD), and the control group received only CD were included for analysis. Two reviewers extracted the data independently. Results expressing as mean differences (MD) and relative risks (RR) were analyzed with a fixed-effects or random-effects models. Results: 19 RCTs involved 1568 participants with 1622 eyes met our inclusion criteria. The results suggested that compared with CD alone, CPMs plus CD for NPDR was superior at reducing the microaneurysm volume (MD -3.37; 95% confidence interval [CI], -3.59 to -3.14), microaneurysm counts (MD -2.29; 95%CI -2.97 to -1.61), hemorrhage area (MD -0.79; 95%CI -0.83 to -0.75), and macular thickness (MD -59.72; 95%CI -63.24 to -56.20). Participants in CPMs plus CD group also achieved a better vision. No obvious adverse events occurred. Conclusion: CPMs as an add-on therapy for NPDR have additional benefits and be generally safe. This meta-analysis demonstrated that CPMs combined with CD could improve retinal microaneurysm, hemorrhage, macular thickness, visual acuity, fasting blood glucose (FBG), and glycosylated hemoglobin (HbAlc) compared with CD alone. Further studies are needed to provide more conclusive evidence. Systematic Review Registration: PROSPERO https://www.crd.york.ac.uk/prospero/, identifier CRD42021257999.


Asunto(s)
Dobesilato de Calcio , Diabetes Mellitus , Retinopatía Diabética , Medicamentos Herbarios Chinos , Dobesilato de Calcio/uso terapéutico , China , Retinopatía Diabética/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicamentos sin Prescripción
6.
Chin Med ; 17(1): 30, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35227280

RESUMEN

Since the outbreak of coronavirus disease 2019 (COVID-19), traditional Chinese medicine (TCM) has made an important contribution to the prevention and control of the epidemic. This review aimed to evaluate the efficacy and explore the mechanisms of TCM for COVID-19. We systematically searched 7 databases from their inception up to July 21, 2021, to distinguish randomized controlled trials (RCTs), cohort studies (CSs), and case-control studies (CCSs) of TCM for COVID-19. Two reviewers independently completed the screening of literature, extraction of data, and quality assessment of included studies. Meta-analysis was performed using Review Manager 5.4 software. Eventually, 29 RCTs involving 3060 patients and 28 retrospective studies (RSs) involving 12,460 patients were included. The meta-analysis demonstrated that TCM could decrease the proportion of patients progressing to severe cases by 55% and the mortality rate of severe or critical patients by 49%. Moreover, TCM could relieve clinical symptoms, curtail the length of hospital stay, improve laboratory indicators, and so on. In addition, we consulted the literature and obtained 149 components of Chinese medicinal herbs that could stably bind to antiviral targets or anti-inflammatory or immune-regulating targets by the prediction of molecular docking. It suggested that the mechanisms involved anti-virus, anti-inflammation, and regulation of immunity. Our study made a systematic review on the efficacy of TCM for COVID-19 and discussed the possible mechanisms, which provided clinical reference and theoretical basis for further research on the mechanism of TCM for COVID-19.

7.
Front Public Health ; 10: 767591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186833

RESUMEN

BACKGROUND: Diabetic renal fibrosis (DRF) is an irreversible renal pathological change in the end-stage of diabetic kidney disease (DKD), which plays a significant role in the development and deterioration of the disease. However, data for bibliometric analysis of renal fibrosis in DKD is currently missing. This study aimed to provide a comprehensive and visualized view of DRF research and lay the foundation for further studies. MATERIALS AND METHODS: Firstly, the data was collected from the Web of Science Core Collection (WoSCC) database. Secondly, the Web of Science analytic tool was performed to analyze publication years, authors, countries/regions, organizations, and citation frequency. Finally, CiteSpace was employed to construct a visualization bibliometric network to reveal the emerging trends and hotspots of DRF. RESULTS: A total of 3,821 publications from 1985 to 2020 were included in this study. The number of publications has maintained a growth trend since 2003. Cooper is the most prolific author in this field, and the American Journal of Physiology-Renal Physiology ranking as first place compared with other journals. In terms of the number of publications, China contributed the most to DRF. Monash University is the organization that published the most papers. The top 5 clusters of keyword co-appearance are "chronic kidney disease", "primary biliary cirrhosis", "receptor", "TGF-beta", "renal tubulointerstitium". The top 5 clusters of reference co-citation are "microRNAs", "bone morphogenetic protein", "hypertrophy", "glomerulosclerosis", "diabetic kidney disease". The strongest citation burst of keyword is "diabetic kidney disease" and the strongest burst of cited reference is "Meng, 2016". CONCLUSIONS: The present study analyzed the research hotspots, Frontiers, and development trend of DRF and have important implications for future research.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Bibliometría , China , Bases de Datos Factuales , Nefropatías Diabéticas/epidemiología , Femenino , Fibrosis/epidemiología , Humanos , Masculino , Estados Unidos
8.
Artículo en Inglés | MEDLINE | ID: mdl-35024051

RESUMEN

OBJECTIVE: To explore the main bioactive compounds and investigate the underlying mechanism of Pollen Typhae (PT) against diabetic retinopathy (DR) by network pharmacology and molecular docking analysis. METHODS: Bioactive ingredients and the target proteins of PT were obtained from TCMSP, and the related target genes were acquired from the SwissTargetPrediction database. The target genes of DR were obtained from GeneCards, TTD database, DisGeNET database, and DrugBank. The compound-target interaction network was established based on Cytoscape 3.7.2. The protein-protein interaction (PPI) network was constructed via STRING database and Cytoscape 3.7.2. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were visualized through DAVID database and Bioinformatics. Ingredient-gene-pathway network analysis was conducted to further screen the ingredients, target proteins, and pathways closely related to the biological mechanism on PT for DR, and molecular docking analysis was performed by SYBYL-X 2.1.1 software. Finally, the mechanism and underlying targets of PT in the treatment of DR were predicted. RESULTS: A total of 8 compounds and 171 intersection targets were obtained based on the online network database. 7 main compounds were screened from compound-target network, and 53 targets including the top six key targets (PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR) were further acquired from PPI analysis. The 53 key targets covered 80 signaling pathways, among which PI3K-Akt signaling pathway, focal adhesion, Rap1 signaling pathway, VEGF signaling pathway, and HIF-1 signaling pathway were closely connected with the biological mechanism involved in the alleviation of DR by PT. Ingredient-gene-pathway network shows that AKTI, EGFR, and VEGFA were core genes, kaempferol and isorhamnetin were pivotal ingredients, and VEGF signaling pathway and Rap1 signaling pathway were closely involved in anti-DR. The docking results indicated that five main compounds (arachidonic acid, isorhamnetin, quercetin, kaempferol, and (2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) had good binding activity with EGFR and AKT1 targets. CONCLUSION: The active ingredients in PT may regulate the levels of inflammatory factors, suppress the oxidative stress, and inhibit the proliferation, migration, and invasion of retinal pericytes by acting on PTGS2, AKT1, VEGFA, MAPK3, TNF, and EGFR targets through VEGF signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and HIF-1 signaling pathway to play a therapeutic role in diabetic retinopathy.

9.
Front Pharmacol ; 12: 737803, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690773

RESUMEN

Food is people's primal want. A reasonable diet and healthy food not only provide nutrients for human growth but also contribute to disease prevention and treatment, while following an unhealthy diet can lead to an increased risk of many diseases, especially metabolic disorders, such as diabetes. Nature is enriched with different food sources, and it seems that purely natural products are more in line with the current concept of health, which enhance the formation of the notion that "Food/Diet Supplements from Natural Sources as a Medicine." As a delicious fruit, the medicinal values such as anticancer, antibacterial, antioxidation, and antiglycating properties of lychee have been found. Lychee (Litchi in Chinese) is a subtropical fruit plant belonging to the family Sapindaceae. It has been widely cultivated in warm climates worldwide, particularly in China, for thousands of years. In recent years, various phytochemical components such as quercetin, procyanidin A2, and (2R)-naringenin-7-O-(3-O-αL-rhamnopyranosyl-ß-D-glucopyranoside) have been identified in a lychee seed, which may lend a lychee seed as a relatively safe and inexpensive adjuvant treatment for diabetes and diabetic complications. In fact, accumulating evidence has shown that lychee seed, lychee seed extracts, and related compounds have promising antihyperglycemic activities, including improving insulin resistance, anti-inflammatory effect, lipid regulation, neuroprotection, antineurotoxic effect, and renoprotection effect. In this review, we summarized publications on antiglycemic effects and mechanisms of lychee seed, lychee seed extracts, and related compounds, which included their efficacies as a cure for diabetes and diabetic complications in cells, animals, and humans, attempting to obtain a robust evidence basis for the clinical application and value of lychee seed.

10.
Front Pharmacol ; 12: 734151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512359

RESUMEN

Panax ginseng C.A.Mey. has been widely consumed as food/diet supplements from natural sources, and its therapeutic properties have also aroused widespread concern. Therapeutic properties of Panax ginseng C.A.Mey. such as anti-inflammatory, ameliorating chronic inflammation, enhancing the immunity, resisting the oxidation again, and regulating the glucose and lipid metabolism have been widely reported. Recent years, lots of interesting studies have reported the potential use of Panax ginseng C.A.Mey. in the management of DKD. DKD has become the leading cause of end-stage renal disease worldwide, which increases the risk of premature death and poses a serious financial burden. Although DKD is somehow controllable with different drugs such as Angiotensin-Converting Enzyme Inhibitors (ACEI), Angiotensin Receptor Blockers (ARB) and lowering-glucose agents, modern dietary changes associated with DKD have facilitated research to assess the preventive and therapeutic merits of diet supplements from natural sources as medicine including Panax ginseng C.A.Mey. Findings from many scientific evidences have suggested that Panax ginseng C.A.Mey. can relieve the pathological status in cellular and animal models of DKD. Moreover, a few studies showed that alleviation of clinical phenotype such as reducing albuminuria, serum creatinine and renal anemia in DKD patients after application or consumption of Panax ginseng C.A.Mey.. Therefore, this review aims to discuss the effectiveness of Panax ginseng C.A.Mey. as medicine for targeting pathological phenotypes in DKD from a pharmacological perspective. This review will provide new insights into the potential understanding use of Panax ginseng C.A.Mey. in the management of DKD in clinical settings.

11.
Biomed Pharmacother ; 142: 112094, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34449321

RESUMEN

Gut microbiota forms a symbiotic relationship with the host and maintains the ecological balance of the internal and external environment of the human body. However, dysbiosis of the gut microbiota and immune deficiency, as well as environmental changes, can destroy the host-microbial balance, leading to the occurrence of a variety of diseases, such as polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), and obesity. Meanwhile, diseases can also affect gut microbiota, forming a vicious cycle. The role of the intestinal microbiota in different diseases have been proven by several studies; however, as a common target of PCOS and T2DM, there are few reports on the treatment of different diseases through the regulation of intestinal microbiota as the critical correlation. This review analyzed the common mechanisms of intestinal microbiota in PCOS and T2DM, including the dysbiosis of gut microbiota, endotoxemia, short-chain fatty acids, biotransformation of bile acids, and synthesis of amino acid in regulating insulin resistance, obesity, chronic inflammation, and mitochondrial dysfunction. The possible therapeutic effects of probiotics and/or prebiotics, fecal microbiota transplantation, bariatric surgery, dietary intervention, drug treatment, and other treatments targeted at regulating intestinal microbiota were also elucidated.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Microbioma Gastrointestinal/fisiología , Síndrome del Ovario Poliquístico/fisiopatología , Animales , Diabetes Mellitus Tipo 2/microbiología , Disbiosis/complicaciones , Disbiosis/terapia , Trasplante de Microbiota Fecal/métodos , Femenino , Humanos , Síndrome del Ovario Poliquístico/microbiología , Prebióticos/administración & dosificación , Probióticos/administración & dosificación
12.
Artículo en Inglés | MEDLINE | ID: mdl-34306142

RESUMEN

BACKGROUND: Rhizoma coptidis (RC) showed a significant effect on PCOS, but its mechanism in PCOS remains unclear. METHODS: The components of RC were searched by TCMSP. The Smiles number of the active ingredients was queried through PubChem, and the predicted targets were obtained from the SwissTargetPrediction database. The DrugBank, GeneCards, and DisGeNET databases were retrieved to acquire the related targets of PCOS. Then, the network of compound-target was constructed. The core targets were analyzed using protein-protein interaction (PPI) analysis, and the binding activities were verified by molecular docking. The enriched pathways of key targets were examined by GO and KEGG. RESULTS: 13 components and 250 targets of RC on PCOS were screened. The core network was filtered based on topological parameters, and the key components were palmatine, berberine, berberrubine, quercetin, and epiberberine. The key targets included DRD2, SLC6A4, CDK2, DPP4, ESR1, AKT2, PGR, and AKT1. Molecular docking displayed that the active ingredients of RC had good binding activities with potential targets of PCOS. After enrichment analysis, 30 functional pathways were obtained, including neuroactive ligand-receptor interaction, dopaminergic synapse, and cAMP signaling pathway. CONCLUSION: In summary, this study clarified the potential effect of RC on PCOS, which is helpful to provide references for clinical practice. It is also conducive to the secondary development of RC and its monomer components.

13.
Comput Biol Med ; 135: 104562, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34174759

RESUMEN

BACKGROUND: The ZaoRenDiHuang (ZRDH) capsule is widely used in clinical practice and has significant therapeutic effects on insomnia. However, its active ingredients and mechanisms of action for insomnia remain unknown. In this study, network pharmacology was employed to elucidate the potential anti-insomnia mechanisms of ZRDH. METHODS: The potential active ingredients of ZRDH were obtained from the Traditional Chinese Medicine Systems Pharmacology Database. Possible targets were predicted using SwissTargetPrediction tools. The insomnia-related targets were identified using the therapeutic target database, Drugbank database, Online Mendelian Inheritance in Man database, and gene-disease associations database. A compound-target-disease network was constructed using Cytoscape for visualization. Additionally, the protein functional annotation and identification of signaling pathways of potential targets were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using the Metascape platform. RESULTS: In this study, 61 anti-insomnia components and 65 anti-insomnia targets of ZRDH were filtered through database mining. The drug-disease network was constructed with five key components. Sixty-five key targets were identified using topological analysis. Docking studies indicated that bioactive compounds could stably bind to the pockets of target proteins. Through data mining and network analysis, the GO terms and KEGG annotation suggested that the neuroactive ligand-receptor interaction, serotonergic synapse CAMP signaling, HIF-1a signaling, and toll-like receptor signaling pathways play vital roles against insomnia. CONCLUSION: The potential mechanisms of ZRDH treatment for insomnia involve multiple components, targets, and pathways. These findings provide a reference for further investigations into the mechanisms underlying ZRDH treatment of insomnia.


Asunto(s)
Medicamentos Herbarios Chinos , Trastornos del Inicio y del Mantenimiento del Sueño , Cápsulas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico
14.
Am J Chin Med ; 49(5): 1063-1092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34107858

RESUMEN

Coronavirus disease (COVID-19) is a new infectious disease associated with high mortality, and traditional Chinese medicine decoctions (TCMDs) have been widely used for the treatment of patients with COVID-19 in China; however, the impact of these decoctions on severe and critical COVID-19-related mortality has not been evaluated. Therefore, we aimed to address this gap. In this retrospective cohort study, we included inpatients diagnosed with severe/critical COVID-19 at the Tongren Hospital of Wuhan University and grouped them depending on the recipience of TCMDs (TCMD and non-TCMD groups). We conducted a propensity score-matched analysis to adjust the imbalanced variables and treatments and used logistic regression methods to explore the risk factors associated with in-hospital death. Among 282 patients with COVID-19 who were discharged or died, 186 patients (66.0%) received TCMD treatment (TCMD cohort) and 96 (34.0%) did not (non-TCMD cohort). After propensity score matching at a 1:1 ratio, 94 TCMD users were matched to 94 non-users, and there were no significant differences in baseline clinical variables between the two groups of patients. The all-cause mortality was significantly lower in the TCMD group than in the non-TCMD group, and this trend remained valid even after matching (21.3% [20/94] vs. 39.4% [37/94]). Multivariable logistic regression model showed that disease severity (odds ratio: 0.010; 95% CI: 0.003, 0.037; [Formula: see text]¡ 0.001) was associated with increased odds of death and that TCMD treatment significantly decreased the odds of in-hospital death (odds ratio: 0.115; 95% CI: 0.035, 0.383; [Formula: see text]¡ 0.001), which was related to the duration of TCMD treatment. Our findings show that TCMD treatment may reduce the mortality in patients with severe/critical COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19/mortalidad , Medicamentos Herbarios Chinos/administración & dosificación , Anciano , COVID-19/patología , Enfermedad Crítica , Femenino , Humanos , Masculino , Medicina Tradicional China , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
15.
Chin Med ; 16(1): 44, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099015

RESUMEN

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), first broke out in Wuhan, China, in 2019. SARS-CoV-2 develops many types of mutations (such as B.1.1.7), making diagnosis and treatment challenging. Although we now have a preliminary understanding of COVID-19, including pathological changes, clinical manifestations, and treatment measures, we also face new difficulties. The biggest problem is that most COVID-19 patients might face sequelae (e.g., fatigue, sleep disturbance, pulmonary fibrosis) during the recovery phase. We aimed to test six Chinese patent medicines to treat three major abnormal symptoms in COVID-19 patients during the recovery phase, including cardiopulmonary function, sleep disturbance, and digestive function. We launched the "three syndromes and six Chinese patent medicines" randomized, double-blind, placebo-controlled, multicenter clinical trial on April 10, 2020. The results showed that Jinshuibao tablets and Shengmaiyin oral liquid significantly improved the cardiopulmonary function of recovering COVID-19 patients. Shumian capsules, but not Xiaoyao capsules, significantly improved patients' sleep disorders. This might be because the indication of Xiaoyao capsules is liver qi stagnation rather than psychological or emotional problems. Xiangsha Liujun pills and Ludangshen oral liquid significantly improved digestive function. Our research provides a guideline for treating COVID-19 sequelae in patients during the recovery period based on high-quality evidence.

16.
Front Pharmacol ; 12: 602218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986661

RESUMEN

Background: Coronavirus Disease 2019 (COVID-19) is still a relevant global problem. Although some patients have recovered from COVID-19, the sequalae to the SARS-CoV-2 infection may include pulmonary fibrosis, which may contribute to considerable economic burden and health-care challenges. Convalescent Chinese Prescription (CCP) has been widely used during the COVID-19 recovery period for patients who were at high risk of pulmonary fibrosis and is recommended by the Diagnosis and Treatment Protocol for COVID-19 (Trial Version sixth, seventh). However, its underlying mechanism is still unclear. Methods: In this study, an integrated pharmacology approach was implemented, which involved evaluation of absorption, distribution, metabolism and excretion of CCP, data mining of the disease targets, protein-protein interaction (PPI) network construction, and analysis, enrichment analysis, and molecular docking simulation, to predict the bioactive components, potential targets, and molecular mechanism of CCP for pulmonary fibrosis associated with SARS-CoV-2 infection. Results: The active compound of CCP and the candidate targets, including pulmonary fibrosis targets, were obtained through database mining. The Drug-Disease network was constructed. Sixty-five key targets were identified by topological analysis. The findings of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation suggested that the VEGF, Toll-like 4 receptor, MAPK signaling pathway, and TGF-ß1 signaling pathways may be involved in pulmonary fibrosis. In the molecular docking analyses, VEGF, TNF-α, IL-6, MMP9 exhibited good binding activity. Findings from our study indicated that CCP could inhibit the expression of VEGF, TNF-α, IL-6, MMP9, TGF-ß1 via the VEGF, Toll-like 4 receptor, MAPK, and TGF-ß1 signaling pathways. Conclusion: Potential mechanisms involved in CCP treatment for COVID-19 pulmonary fibrosis associated with SARS-CoV-2 infection involves multiple components and multiple target points as well as multiple pathways. These findings may offer a profile for further investigations of the anti-fibrotic mechanism of CCP.

17.
Biomed Pharmacother ; 137: 111267, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33508618

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus causing serious human disease to spread across the world in the past 20 years, after SARS and Middle East respiratory syndrome. As of mid-September 2020, more than 200 countries and territories have reported 30 million cases of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2, including 950,000 deaths. Supportive treatment remains the mainstay of therapy for COVID-19. The World Health Organization reported that four candidate drugs, including remdesivir, are ineffective or have little effect on COVID-19. According to China News, 90 % of Chinese patients with COVID-19 use traditional Chinese medicine (TCM), with an effectiveness rate of 80 %, and no deterioration in patient condition. We have compiled the direct evidence of TCM treatment for COVID-19 as of December 31, 2020. We describe the advantages of TCM in the treatment of COVID-19 based on clinical evidence and the required methods for its clinical use. TCM can inhibit virus replication and transcription, prevent the combination of SARS-CoV-2 and the host, and attenuate the cytokine storm and immune deficiency caused by the virus infection. The cooperation of many countries is required to establish international guidelines regarding the use of TCM in patients with severe COVID-19 from other regions and of different ethnicities. Studies on the psychological abnormalities in patients with COVID-19, and medical staff, is lacking; it is necessary to provide a complete chain of evidence to determine the efficacy of TCM in the related prevention, treatment, and recovery. This study aims to provide a reference for the rational use of TCM in the treatment of COVID-19.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China/métodos , SARS-CoV-2/efectos de los fármacos , COVID-19/epidemiología , COVID-19/terapia , Humanos , Resultado del Tratamiento
18.
Stem Cell Rev Rep ; 16(6): 1292-1304, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33011925

RESUMEN

Crohn's disease (CD) with externally fistulizing openings indicates the aggressive and relapsing manifestation and results in undesirable long-term outcomes of patients. MSC-based approach combined with multidisciplinary strategy has mandated a redefinition of the administration and management of numerous recurrent and refractory diseases whereas the spatio-temporal evaluation of the metabolokinetics and efficacy of MSCs on intractable CD with enterocutaneous fistula (EF) are largely inaccessible and dauntingly complex. Herein, we primitively established dual-fluorescence expressing placenta-derived MSCs (DF-MSCs) and explored their multidimensional attributes, including cytomorphology, immunophenotying, multilineage differentiation and long-term proliferation, together with the recognition of bifluorescence intensity (BLI). Then, with the aid of in vivo living imaging, clinicopathological or inflammatory cytokine examinations and in vitro analyses, we systematically and meticulously dissected the metabolokinetics and curative effect of MSCs on mice with refractory Crohn's-like EF (EF mice), together with revealing the underlying mechanism including reactive oxygen species (ROS) and neovascularization. Strikingly, the DF-MSCs exhibited stabilized BLI and biological properties. The spatio-temporal distribution and therapeutic process of MSCs in EF mice were intuitively delineated. Meanwhile, our data indicated the curative mechanisms of DF-MSCs by simultaneously downregulating ROS and accelerating neovascularization. Collectively, we systematically illuminated the spatio-temporal biofunction and mechanism of DF-MSCs on EF mice. Our findings have supplied new references for safety and effectiveness assessments as well as the establishment of guidelines for optimal administrations of MSC-based cytotherapy in preclinical studies, which collectively indicates the prospect of P-MSC administration in clinical trials during a wide spectrum of disease remodeling including the fistulizing CD. Graphical abstract.


Asunto(s)
Enfermedad de Crohn/terapia , Fístula Intestinal/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Placenta/citología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Femenino , Fluorescencia , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inmunofenotipificación , Inflamación/patología , Ratones , Neovascularización Fisiológica , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Análisis de Supervivencia , Factores de Tiempo
19.
Chin Med ; 15: 99, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32963587

RESUMEN

BACKGROUND: Diabetic retinopathy (DR) is the leading cause of blindness in many countries. The current treatment for non-proliferative DR (NPDR) using Western medicine (WM) alone is insufficient. At present, the combination of NPDR treatment with traditional Chinese medicine (TCM) and WM is universally applied. We aimed to evaluate the effectiveness and safety of TCM as an add-on for NPDR using a systematic review and meta-analysis. METHOD: Data from randomized controlled trials (RCTs) of TCM for NPDR treatment along with WM before July 6, 2019, were collected from the China National Knowledge Infrastructure, Wanfang Database, China Biomedical Database, Pubmed, Embase, and Cochrane Library. Relevant data were extracted by two reviewers. I 2 statistics was adopted to appraise heterogeneity. If I 2 < 50% the fixed-effects model was employed, otherwise a random-effect model was employed. (PROSPERO: CRD42019134947). RESULT: Eighteen RCTs (1522 patients) were included based on the inclusion and exclusion criteria. The results showed that compared with WM alone, TCM (including Compound Xueshuantong Capsule, Qiming Granule, and others) combined with WM for NPDR could improve the overall effiicacy [n = 1686, RR 1.24 (1.18,1.30), P < 0.00001, I 2 = 0%], and reduce the influence of risk factors related to NPDR, such as glycated hemoglobin level [n = 360, MD - 0.85 (- 1.28, - 0.41), P = 0.0001, I 2 = 72%], triglyceride (P < 0.00001), and total cholesterol (P = 0.0008). Moreover, no serious adverse events were reported. CONCLUSION: Compared with WM alone, TCM + WM could significantly improve NPDR and also reduce the correlation levels of risk factors, such as hyperglycemia, dyslipidemia. However, the small sample included in the study might lead to a publication bias, and therefore, our results should be treated with caution.

20.
Int J Mol Med ; 46(4): 1551-1561, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32945344

RESUMEN

Mesenchymal stem cells (MSCs) are pluripotent cells that can be applied to the treatment of immune disorders, including inflammatory bowel disease (IBD). The therapeutic effects of MSCs have been mostly attributed to the secretion of soluble factors with paracrine actions, such as extracellular vesicles (EVs), which may play a relevant role in the repair of damaged tissues. In the present study, a mouse model of colitis was induced with the use of trinitrobenzene sulfonic acid (TNBS). EVs derived from human placental mesenchymal stem cells (hP­MSCs) were used for the treatment of colitis by in situ injection. Clinical scores were applied to verify the therapeutic effects of EVs on mice with colitis. Inflammation in the colon was evaluated by measuring the levels of various inflammatory cytokines. The content of reactive oxygen species (ROS) was detected by the use of molecular imaging methods for real­time tracking and the therapeutic effects of EVs on mucosal healing in mice with colitis were evaluated. The results revealed that the injection of EVs regulated the balance of pro­inflammatory and anti­inflammatory cytokines in colon tissue. Treatment with EVs also suppressed oxidative stress by decreasing the activity of myeloperoxidase (MPO) and ROS. Histological analysis further confirmed that the EVs significantly promoted mucosal healing, as reflected by the promotion of the proliferation of colonic epithelial cells and the maintenance of tight junctions. Taken together, the findings of the present study demonstrated that EVs derived from hP­MSCs alleviated TNBS­induced colitis by inhibiting inflammation and oxidative stress. These findings may provide a novel theoretical basis for the EV­based treatment of IBD.


Asunto(s)
Colitis/patología , Vesículas Extracelulares/patología , Inflamación/patología , Células Madre Mesenquimatosas/patología , Estrés Oxidativo/fisiología , Placenta/fisiología , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Factores Inmunológicos/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Placenta/metabolismo , Embarazo , Ácido Trinitrobencenosulfónico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA