Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell ; 35(3): 1076-1091, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519262

RESUMEN

Grain size is an important agronomic trait, but our knowledge about grain size determination in crops is still limited. Endoplasmic reticulum (ER)-associated degradation (ERAD) is a special ubiquitin proteasome system that is involved in degrading misfolded or incompletely folded proteins in the ER. Here, we report that SMALL GRAIN 3 (SMG3) and DECREASED GRAIN SIZE 1 (DGS1), an ERAD-related E2-E3 enzyme pair, regulate grain size and weight through the brassinosteroid (BR) signaling pathway in rice (Oryza sativa). SMG3 encodes a homolog of Arabidopsis (Arabidopsis thaliana) UBIQUITIN CONJUGATING ENZYME 32, which is a conserved ERAD-associated E2 ubiquitin conjugating enzyme. SMG3 interacts with another grain size regulator, DGS1. Loss of function of SMG3 or DGS1 results in small grains, while overexpression of SMG3 or DGS1 leads to long grains. Further analyses showed that DGS1 is an active E3 ubiquitin ligase and colocates with SMG3 in the ER. SMG3 and DGS1 are involved in BR signaling. DGS1 ubiquitinates the BR receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) and affects its accumulation. Genetic analysis suggests that SMG3, DGS1, and BRI1 act together to regulate grain size and weight. In summary, our findings identify an ERAD-related E2-E3 pair that regulates grain size and weight, which gives insight into the function of ERAD in grain size control and BR signaling.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Oryza , Enzimas Ubiquitina-Conjugadoras , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Oryza/genética , Oryza/metabolismo , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Front Genet ; 13: 918973, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35899195

RESUMEN

Plant lesion mimics refer to necrotic spots spontaneously produced by the plant without mechanical damage, pathogen invasion, and adversity stress. Here, we isolated and characterized two rice (Oryza sativa L) mutants, namely, spl88-1 (spotted leaf88-1) and spl88-2 (spotted leaf88-2), which were identified from an ethyl methanesulfonate-mutagenized japonica cultivar Xiushui 11 population. Physiological and biochemical experiments indicated that more ROS accumulated in spl88-1 and spl88-2 than in wild type. spl88-1 and spl88-2 displayed spontaneous cell death and enhanced their resistance to bacterial blight by affecting the expression of defense-related genes. We isolated SPL88 by map-based cloning, which encoded a highly conserved Cullin protein. A single base deletion was detected in spl88-1 and spl88-2, in which the 132nd base C of SPL88-1 and the 381th base T of SPL88-2 were deleted, causing premature termination of protein translation. SPL88 was expressed in root, stem, leaf, leaf sheath, and panicle. The Cullin protein was localized in the cytoplasm and nucleus. The aforementioned results indicate that SPL88 regulates the growth and development of rice by affecting the expression of defense-related genes.

3.
Nat Commun ; 13(1): 2055, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440626

RESUMEN

Changes in ambient temperature influence crop fertility and production. Understanding of how crops sense and respond to temperature is thus crucial for sustainable agriculture. The thermosensitive genic male-sterile (TGMS) lines are widely used for hybrid rice breeding and also provide a good system to investigate the mechanisms underlying temperature sensing and responses in crops. Here, we show that OsMS1 is a histone binding protein, and its natural allele OsMS1wenmin1 confers thermosensitive male sterility in rice. OsMS1 is primarily localized in nuclei, while OsMS1wenmin1 is localized in nuclei and cytoplasm. Temperature regulates the abundances of OsMS1 and OsMS1wenmin1 proteins. The high temperature causes more reduction of OsMS1wenmin1 than OsMS1 in nuclei. OsMS1 associates with the transcription factor TDR to regulate expression of downstream genes in a temperature-dependent manner. Thus, our findings uncover a thermosensitive mechanism that could be useful for hybrid crop breeding.


Asunto(s)
Oryza , Proteínas de Plantas/genética , Factores de Transcripción/genética , Alelos , Oryza/genética , Fitomejoramiento , Infertilidad Vegetal , Temperatura
5.
Mol Plant ; 14(8): 1266-1280, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33930509

RESUMEN

Regulation of seed size is a key strategy for improving crop yield and is also a basic biological question. However, the molecular mechanisms by which plants determine their seed size remain elusive. Here, we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. Interestingly, WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as an adaptor protein to recruit the transcriptional co-repressor. In contrary, OsbZIP47 restricts grain growth by decreasing cell proliferation. Further studies reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses confirm that GW2, WG1, and OsbZIP47 function in a common pathway to control grain growth. Taken together, our findings reveal a genetic and molecular framework for the control of grain size and weight by the GW2-WG1-OsbZIP47 regulatory module, providing new targets for improving seed size and weight in crops.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Semillas/genética , Ubiquitina-Proteína Ligasas/genética , Oryza/crecimiento & desarrollo , Semillas/anatomía & histología , Ubiquitinación/genética
6.
Plant Cell ; 33(4): 1212-1228, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33693937

RESUMEN

Panicle size and grain number are important agronomic traits and influence grain yield in rice (Oryza sativa), but the molecular and genetic mechanisms underlying panicle size and grain number control remain largely unknown in crops. Here we report that LARGE2 encodes a HECT-domain E3 ubiquitin ligase OsUPL2 and regulates panicle size and grain number in rice. The loss of function large2 mutants produce large panicles with increased grain number, wide grains and leaves, and thick culms. LARGE2 regulates panicle size and grain number by repressing meristematic activity. LARGE2 is highly expressed in young panicles and grains. Biochemical analyses show that LARGE2 physically associates with ABERRANT PANICLE ORGANIZATION1 (APO1) and APO2, two positive regulators of panicle size and grain number, and modulates their stabilities. Genetic analyses support that LARGE2 functions with APO1 and APO2 in a common pathway to regulate panicle size and grain number. These findings reveal a novel genetic and molecular mechanism of the LARGE2-APO1/APO2 module-mediated control of panicle size and grain number in rice, suggesting that this module is a promising target for improving panicle size and grain number in crops.


Asunto(s)
Oryza/fisiología , Proteínas de Plantas/genética , Semillas/genética , Ubiquitina-Proteína Ligasas/genética , Clonación Molecular , Productos Agrícolas/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Mutación , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/metabolismo
7.
Plant Cell ; 32(6): 1905-1918, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303659

RESUMEN

Regulation of grain size is crucial for improving crop yield and is also a basic aspect in developmental biology. However, the genetic and molecular mechanisms underlying grain size control in crops remain largely unknown despite their central importance. Here, we report that the MEI2-LIKE PROTEIN4 (OML4) encoded by the LARGE1 gene is phosphorylated by GLYCOGEN SYNTHASE KINASE2 (GSK2) and negatively controls grain size and weight in rice (Oryza sativa). Loss of function of OML4 leads to large and heavy grains, while overexpression of OML4 causes small and light grains. OML4 regulates grain size by restricting cell expansion in the spikelet hull. OML4 is expressed in developing panicles and grains, and the GFP-OML4 fusion protein is localized in the nuclei. Biochemical analyses show that the GSK2 physically interacts with OML4 and phosphorylates it, thereby possibly influencing the stability of OML4. Genetic analyses support that GSK2 and OML4 act, at least in part, in a common pathway to control grain size in rice. These results reveal the genetic and molecular mechanism of a GSK2-OML4 regulatory module in grain size control, suggesting that this pathway is a suitable target for improving seed size and weight in crops.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fosforilación/genética , Fosforilación/fisiología , Proteínas de Plantas/genética
8.
Plant J ; 95(6): 937-946, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29775492

RESUMEN

Grain size and weight are directly associated with grain yield in crops. However, the molecular mechanisms that set final grain size and weight remain largely unknown. Here, we characterize two large grain mutants, large grain8-1 (large8-1) and large grain8-2 (large8-2). LARGE8 encodes the mitogen-activated protein kinase phosphatase1 (OsMKP1). Loss of function mutations in OsMKP1 results in large grains, while overexpression of OsMKP1 leads to small grains. OsMKP1 determines grain size by restricting cell proliferation in grain hulls. OsMKP1 directly interacts with and deactivates the mitogen-activated protein kinase 6 (OsMAPK6). Taken together, we identify OsMKP1 as a crucial factor that influences grain size by deactivating OsMAPK6, indicating that the reversible phosphorylation of OsMAPK6 plays important roles in determining grain size in rice.


Asunto(s)
Grano Comestible/metabolismo , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proliferación Celular , Grano Comestible/enzimología , Grano Comestible/crecimiento & desarrollo , Genes de Plantas/genética , Genes de Plantas/fisiología , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/genética , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/fisiología , Mutación , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología
9.
Mol Plant ; 11(6): 860-873, 2018 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-29702261

RESUMEN

Grain size is one of the key agronomic traits that determine grain yield in crops. However, the mechanisms underlying grain size control in crops remain elusive. Here we demonstrate that the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway positively regulates grain size and weight in rice. In rice, loss of OsMKKK10 function results in small and light grains, short panicles, and semi-dwarf plants, while overexpression of constitutively active OsMKKK10 (CA-OsMKKK10) results in large and heavy grains, long panicles, and tall plants. OsMKKK10 interacts with and phosphorylates OsMKK4. We identified an OsMKK4 gain-of-function mutant (large11-1D) that produces large and heavy grains. OsMKK4A227T encoded by the large11-1D allele has stronger kinase activity than OsMKK4. Plants overexpressing a constitutively active form of OsMKK4 (OsMKK4-DD) also produce large grains. Further biochemical and genetic analyses revealed that OsMKKK10, OsMKK4, and OsMAPK6 function in a common pathway to control grain size. Taken together, our study establishes an important genetic and molecular framework for OsMKKK10-OsMKK4-OsMAPK6 cascade-mediated control of grain size and weight in rice.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Alelos , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Proteína Quinasa 6 Activada por Mitógenos/genética , Oryza/citología , Oryza/enzimología , Fosforilación , Proteínas de Plantas/genética
10.
Plant Reprod ; 31(3): 237-251, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29523952

RESUMEN

KEY MESSAGE: Summary of rice grain size. Rice is one of the most important crops in the world. Increasing rice yield has been an urgent need to support the rapid growth of global population. The size of grains is one of major components determining rice yield; thus, grain size has been an essential target during rice breeding. Understanding the genetic and molecular mechanisms of grain size control can provide new strategies for yield improvement in rice. In general, the final size of rice grains is coordinately controlled by cell proliferation and cell expansion in the spikelet hull, which sets the storage capacity of the grain and limits grain filling. Recent studies have identified several quantitative trait loci and a number of genes as key grain size regulators. These regulators are involved in G protein signaling, the mitogen-activated protein kinase signaling pathway, the ubiquitin-proteasome pathway, phytohormone signalings, or transcriptional regulation. In this review, we summarize current knowledge on grain size control in rice and discuss the genetic and molecular mechanisms of these grain size regulators.


Asunto(s)
Grano Comestible/metabolismo , Oryza/metabolismo , Cromosomas de las Plantas/genética , Grano Comestible/genética , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética
11.
Plant J ; 91(5): 849-860, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28621888

RESUMEN

Grain size and shape are two crucial traits that influence grain yield and grain appearance in rice. Although several factors that affect grain size have been described in rice, the molecular mechanisms underlying the determination of grain size and shape are still elusive. In this study we report that WIDE AND THICK GRAIN 1 (WTG1) functions as an important factor determining grain size and shape in rice. The wtg1-1 mutant exhibits wide, thick, short and heavy grains and also shows an increased number of grains per panicle. WTG1 determines grain size and shape mainly by influencing cell expansion. WTG1 encodes an otubain-like protease, which shares similarity with human OTUB1. Biochemical analyses indicate that WTG1 is a functional deubiquitinating enzyme, and the mutant protein (wtg1-1) loses this deubiquitinating activity. WTG1 is expressed in developing grains and panicles, and the GFP-WTG1 fusion protein is present in the nucleus and cytoplasm. Overexpression of WTG1 results in narrow, thin, long grains due to narrow and long cells, further supporting the role of WTG1 in determining grain size and shape. Thus, our findings identify the otubain-like protease WTG1 to be an important factor that determines grain size and shape, suggesting that WTG1 has the potential to improve grain size and shape in rice.


Asunto(s)
Oryza/enzimología , Péptido Hidrolasas/metabolismo , Grano Comestible/enzimología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Péptido Hidrolasas/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinación
12.
Yi Chuan ; 39(4): 346-353, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28420613

RESUMEN

Spotted-leaf mutants form spots in leaves or leaf sheaths under normal condition. The spotted-leaf phenotypes are similar to hypersensitive reaction of plants attacked by pathogen. Identification and characterization of the spotted-leaf mutants are helpful for understanding the mechanisms of resistance to plant diseases. Here, we identify two spotted-leaf mutants spl101 and spl102 from an EMS-treated elite japonica cultivar KYJ (Kuanyejing). spl101 and spl102 form serious spots at the late heading stage. Genetic analyses show that the spotted-leaf phenotypes of both spl101 and spl102 are caused by a single recessive mutation, respectively. By employing the Mutmap method, we reveal that both spl101 and spl102 contain mutations in the OsEDR1 gene. The spl101 mutation occurs in the 5°-splicing site of the 6th intron of OsEDR1, which causes abnormal recognition of the 6th intron and leads to the frameshift mutation. The spl102 mutant contains a mutation in the tenth exon of OsEDR1, resulting in an amino acid change from the phenylalanine (F) to the cysteine (C). OsEDR1 has been reported to regulate pathogen-resistant reaction, and loss of OsEDR1 function produces similar phenotypes to those of spl101 and spl102. Here, two newly identified alleles of OsEDR1 will be benefit for further understanding the molecular mechanisms of the OsEDR1 gene in disease resistance, and will be helpful for enriching the rice germplasm resources. In addition, our results also validate the effectiveness of the Mutmap method in cloning the candidate mutations.


Asunto(s)
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación , Oryza/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética
13.
Mol Plant ; 10(5): 685-694, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28366824

RESUMEN

The utilization of natural genetic variation greatly contributes to improvement of important agronomic traits in crops. Understanding the genetic basis for natural variation of grain size can help breeders develop high-yield rice varieties. In this study, we identify a previously unrecognized gene, named GSE5, in the qSW5/GW5 locus controlling rice grain size by combining the genome-wide association study with functional analyses. GSE5 encodes a plasma membrane-associated protein with IQ domains, which interacts with the rice calmodulin protein, OsCaM1-1. We found that loss of GSE5 function caused wide and heavy grains, while overexpression of GSE5 resulted in narrow grains. We showed that GSE5 regulates grain size predominantly by influencing cell proliferation in spikelet hulls. Three major haplotypes of GSE5 (GSE5, GSE5DEL1+IN1, and GSE5DEL2) in cultivated rice were identified based on the deletion/insertion type in its promoter region. We demonstrated that a 950-bp deletion (DEL1) in indica varieties carrying the GSE5DEL1+IN1 haplotype and a 1212-bp deletion (DEL2) in japonica varieties carrying the GSE5DEL2 haplotype associated with decreased expression of GSE5, resulting in wide grains. Further analyses indicate that wild rice accessions contain all three haplotypes of GSE5, suggesting that the GSE5 haplotypes present in cultivated rice are likely to have originated from different wild rice accessions during rice domestication. Taken together, our results indicate that the previously unrecognized GSE5 gene in the qSW5/GW5 locus, which is widely utilized by rice breeders, controls grain size, and reveal that natural variation in the promoter region of GSE5 contributes to grain size diversity in rice.


Asunto(s)
Grano Comestible/genética , Genes de Plantas , Variación Genética , Oryza/genética , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Secuencia de Bases , Proliferación Celular/genética , ADN de Plantas , Grano Comestible/anatomía & histología , Grano Comestible/citología , Evolución Molecular , Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de la Membrana/genética , Oryza/anatomía & histología , Dominios Proteicos , Eliminación de Secuencia
14.
Rice (N Y) ; 9(1): 64, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27900723

RESUMEN

BACKGROUND: Grain size is one of key agronomic traits that determine grain yield in rice. Several regulators of grain size have been identified in rice, but the mechanisms that determine grain size and yield remain largely unknown. RESULTS: Here we characterize a small grain (smg11) mutant in rice, which exhibits small grains, dense panicles and the increased number of grains per panicle. Cloning and sequence analyses of the SMG11 gene reveal that smg11 is a new allele of DWARF2 (D2), which encodes a cytochrome P450 (CYP90D2) involved in brassinosteroid biosynthetic pathway. Overexpression of D2/SMG11 increases grain size and grain weight of wild-type plants. Overexpression of D2/SMG11 at a suitable level also significantly increases grain yield in rice. Cellular analyses indicate that D2/SMG11 controls grain size by promoting cell expansion. Further results reveal that D2/SMG11 influences expression of several known grain size genes involved in the regulation of cell expansion, revealing a novel link between D2/SMG11 and known grain size genes. CONCLUSIONS: SMG11 controls grain size by promoting cell expansion in grain hulls. SMG11 regulates cell expansion, at least in part, by influencing expression of several grain size genes involved in the regulation of cell expansion. The smg11 is a new allele of DWARF2/D2. The suitable expression of SMG11 increases grain size, grain weight and grain yield. Our findings reveal the functions of D2/SMG11 in grain size and grain yield, suggesting that the suitable expression of D2/SMG11 is a promising approach to improve grain yield in rice.

15.
Yi Chuan ; 37(6): 582-9, 2015 06.
Artículo en Chino | MEDLINE | ID: mdl-26351055

RESUMEN

Control of organ size by cell proliferation and cell expansion is a fundamental process in plant development, but little is known about the genetic and molecular mechanisms that determine organ size in plants. To understand the genetic and molecular mechanisms of organ growth control, we isolate a set of mutants with altered leaf size and identify the narrow leaf mutant, zhaiye 17 (zy17) (zhaiye means narrow leaf in Chinese). zy17 exhibits narrow leaves, slightly short plants, small panicles, reduced panicle branches and decreased grain numbers per panicle compared with the wild type. Our cytological analyses show that the narrow leaf phenotype of zy17 is caused by the reduced number of cells, indicating that ZY17 regulates cell proliferation. Genetic analyses show that the zy17 mutant phenotypes are controlled by a single gene. Using the whole genome resequencing approach and linkage analysis, we identify Os02g22390, Os02g28280 and Os02g29530 as candidate genes. Os02g22390 encodes a retrotransposon protein with the mutation occurring in the intronic region; Os02g28280 encodes a protein with unknown function with a base substitution resulting in non-synonymous mutation; Os02g29530 encodes a protein containing the PFAM domain related to glycosyltransferase, with a 2 bp deletion mutation causing a premature termination. Further studies on these three candidate genes will be helpful for understanding the molecular mechanism of organ size control in rice.


Asunto(s)
Genes de Plantas , Mutación , Oryza/genética , Hojas de la Planta/genética , Polimorfismo de Nucleótido Simple
16.
Nat Plants ; 2: 15203, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-27250749

RESUMEN

An increase in grain yield is crucial for modern agriculture(1). Grain size is one of the key components of grain yield in rice and is regulated by quantitative trait loci (QTLs)(2,3). Exploring new QTLs for grain size will help breeders develop elite rice varieties with higher yields(3,4). Here, we report a new semi-dominant QTL for grain size and weight (GS2) in rice, which encodes the transcription factor OsGRF4 (GROWTH-REGULATING FACTOR 4) and is regulated by OsmiR396. We demonstrate that a 2 bp substitution mutation in GS2 perturbs OsmiR396-directed regulation of GS2, resulting in large and heavy grains and increased grain yield. Further results reveal that GS2 interacts with the transcription coactivitors OsGIF1/2/3, and overexpression of OsGIF1 increases grain size and weight. Thus, our findings define the regulatory mechanism of GS2, OsGIFs and OsmiR396 in grain size and weight control, suggesting this pathway could be used to increase yields in crops.


Asunto(s)
MicroARNs/genética , Oryza/fisiología , Proteínas de Plantas/genética , Semillas/fisiología , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo , Semillas/genética
17.
Planta ; 239(5): 1065-77, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24519544

RESUMEN

Peanut (Arachis hypogaea L.) is an important legume providing edible proteins and N2 fixation. However, iron deficiency severely reduces peanut growth in calcareous soils. The maize/peanut intercropping effectively improves iron nutrition and N2 fixation of peanut under pot and field conditions on calcareous soils. However, little was known of how intercropping regulates iron transporters in peanut. We identified AhDMT1 as a Fe(2+) transporter which was highly expressed in mature nodules with stronger N2 fixation capacity. Promoter expression analysis indicated that AhDMT1 was localized in the vascular tissues of both roots and nodules in peanut. Short-term Fe-deficiency temporarily induced an AhDmt1 expression in mature nodules in contrast to roots. However, analysis of the correlation between the complex regulation pattern of AhDmt1 expression and iron nutrition status indicated that sufficient iron supply for long term was a prerequisite for keeping AhDmt1 at a high expression level in both, peanut roots and mature nodules. The AhDmt1 expression in peanut intercropped with maize under 3 years greenhouse experiments was similar to that of peanut supplied with sufficient iron in laboratory experiments. Thus, the positive interspecific effect of intercropping may supply sufficient iron to enhance the expression of AhDmt1 in peanut roots and mature nodules to improve the iron nutrition and N2 fixation in nodules. This study may also serve as a paradigm in which functionally important genes and their ecological significance in intercropping were characterized using a candidate gene approach.


Asunto(s)
Agricultura , Arachis/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fijación del Nitrógeno , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Secuencia de Aminoácidos , Arachis/efectos de los fármacos , Arachis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Prueba de Complementación Genética , Hierro/farmacología , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Fijación del Nitrógeno/efectos de los fármacos , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/efectos de los fármacos , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/genética , Alineación de Secuencia , Suelo , Factores de Tiempo , Zea mays/efectos de los fármacos
18.
Plant J ; 77(4): 547-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24320692

RESUMEN

Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth.


Asunto(s)
Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , MAP Quinasa Quinasa 4/genética , Oryza/enzimología , Transducción de Señal , Brasinoesteroides/metabolismo , Proliferación Celular , Mapeo Cromosómico , Grano Comestible/citología , Grano Comestible/enzimología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Flores/citología , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Genes Reporteros , MAP Quinasa Quinasa 4/metabolismo , Meristema/citología , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Mutación , Oryza/citología , Oryza/genética , Oryza/crecimiento & desarrollo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/enzimología , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión , Plantones/citología , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo
19.
J Proteomics ; 78: 447-60, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23103225

RESUMEN

Intercropping is an important and sustainable cropping practice in agroecosystems. Peanut/maize intercropping is known to improve the iron (Fe) content of peanuts in calcareous soils. In this study, a proteomic approach was used to uncover the ecological significance of peanut/maize intercropping at the molecular level. We demonstrate that photosynthesis-related proteins accumulated in intercropped peanut leaves, suggesting that the intercropped peanuts had a stronger photosynthetic efficiency. Moreover, stress-response proteins displayed elevated expression levels in both peanut and maize in a monocropping system. This indicated that intercropping contributes to resistance to stress conditions. Allene oxide synthase and 12-oxo-phytodienoic acid reductase, two key enzymes in jasmonate (JA) biosynthesis, increased in abundance in the maize roots of the intercropping system, consistent with the upregulation of JA-induced proteins shown by microarray analysis. These results imply that JA may act as a signaling molecule, playing an important role in intercropping through rhizosphere interaction. This study suggests that peanut/maize intercropping results in high Fe availability in the rhizosphere, leading to variation in the proteins related to carbon and nitrogen metabolism. The advantages of intercropping systems may improve the ecological adaptation of plants to environmental stress.


Asunto(s)
Arachis/metabolismo , Ecosistema , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Rizoma/metabolismo , Zea mays/metabolismo , Fotosíntesis/fisiología , Análisis por Matrices de Proteínas/métodos , Proteómica/métodos
20.
J Exp Bot ; 63(12): 4437-46, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22611231

RESUMEN

Peanut/maize intercropping is a sustainable and effective agroecosystem to alleviate iron-deficiency chlorosis. Using suppression subtractive hybridization from the roots of intercropped and monocropped peanut which show different iron nutrition levels, a peanut gene, AhNRAMP1, which belongs to divalent metal transporters of the natural resistance-associated macrophage protein (NRAMP) gene family was isolated. Yeast complementation assays suggested that AhNRAMP1 encodes a functional iron transporter. Moreover, the mRNA level of AhNRAMP1 was obviously induced by iron deficiency in both roots and leaves. Transient expression, laser microdissection, and in situ hybridization analyses revealed that AhNRAMP1 was mainly localized on the plasma membrane of the epidermis of peanut roots. Induced expression of AhNRAMP1 in tobacco conferred enhanced tolerance to iron deprivation. These results suggest that the AhNRAMP1 is possibly involved in iron acquisition in peanut plants.


Asunto(s)
Arachis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hierro/metabolismo , Proteínas de Plantas/metabolismo , Arachis/genética , Arachis/fisiología , Secuencia de Bases , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Prueba de Complementación Genética , Deficiencias de Hierro , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Filogenia , Epidermis de la Planta/embriología , Epidermis de la Planta/genética , Epidermis de la Planta/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Análisis de Secuencia de ADN , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiología , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...