Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Plants (Basel) ; 13(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674527

RESUMEN

CCT MOTIF FAMILY (CMF) genes belong to the CCT gene family and have been shown to play a role in diverse processes, such as flowering time and yield regulation, as well as responses to abiotic stresses. CMF genes have not yet been identified in Brassica rapa. A total of 25 BrCMF genes were identified in this study, and these genes were distributed across eight chromosomes. Collinearity analysis revealed that B. rapa and Arabidopsis thaliana share many homologous genes, suggesting that these genes have similar functions. According to sequencing analysis of promoters, several elements are involved in regulating the expression of genes that mediate responses to abiotic stresses. Analysis of the tissue-specific expression of BrCMF14 revealed that it is highly expressed in several organs. The expression of BrCMF22 was significantly downregulated under salt stress, while the expression of BrCMF5, BrCMF7, and BrCMF21 was also significantly reduced under cold stress. The expression of BrCMF14 and BrCMF5 was significantly increased under drought stress, and the expression of BrCMF7 was upregulated. Furthermore, protein-protein interaction network analysis revealed that A. thaliana homologs of BrCMF interacted with genes involved in the abiotic stress response. In conclusion, BrCMF5, BrCMF7, BrCMF14, BrCMF21, and BrCMF22 appear to play a role in responses to abiotic stresses. The results of this study will aid future investigations of CCT genes in B. rapa.

4.
Int J Mol Sci ; 24(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686403

RESUMEN

The GLABROUS1 Enhancer Binding Protein (GeBP) gene family is pivotal in regulating plant growth, development, and stress responses. However, the role of GeBP in Brassica rapa remains unclear. This study identifies 20 BrGeBP genes distributed across 6 chromosomes, categorized into 4 subfamilies. Analysis of their promoter sequences reveals multiple stress-related elements, including those responding to drought, low temperature, methyl jasmonate (MeJA), and gibberellin (GA). Gene expression profiling demonstrates wide expression of BrGeBPs in callus, stem, silique, and flower tissues. Notably, BrGeBP5 expression significantly decreases under low-temperature treatment, while BrGeBP3 and BrGeBP14 show increased expression during drought stress, followed by a decrease. Protein interaction predictions suggest that BrGeBP14 homolog, At5g28040, can interact with DES1, a known stress-regulating protein. Additionally, microRNA172 targeting BrGeBP5 is upregulated under cold tolerance. These findings underscore the vital role of BrGeBPs in abiotic stress tolerance. Specifically, BrGeBP3, BrGeBP5, and BrGeBP14 show great potential for regulating abiotic stress. This study contributes to understanding the function of BrGeBPs and provides valuable insights for studying abiotic stress in B. rapa.


Asunto(s)
Brassica rapa , Sequías , Humanos , Brassica rapa/genética , Resistencia a la Sequía , Cromosomas Humanos Par 6 , Frío , Proteínas de Unión al ADN
5.
Genes (Basel) ; 14(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37628616

RESUMEN

Nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation as well as abiotic stress responses in plants. However, little is known about the NRT2 gene family in Brassica rapa. In this study, 14 NRT2s were identified in the B. rapa genome. The BrNRT2 family members contain the PLN00028 and MATE_like superfamily domains. Cis-element analysis indicated that regulatory elements related to stress responses are abundant in the promoter sequences of BrNRT2 genes. BrNRT2.3 expression was increased after drought stress, and BrNRT2.1 and BrNRT2.8 expression were significantly upregulated after salt stress. Furthermore, protein interaction predictions suggested that homologs of BrNRT2.3, BrNRT2.1, and BrNRT2.8 in Arabidopsis thaliana may interact with the known stress-regulating proteins AtNRT1.1, AtNRT1.5, and AtNRT1.8. In conclusion, we suggest that BrNRT2.1, BrNRT2.3, and BrNRT2.8 have the greatest potential for inducing abiotic stress tolerance. Our findings will aid future studies of the biological functions of BrNRT2 family genes.


Asunto(s)
Arabidopsis , Brassica rapa , Brassica rapa/genética , Transportadores de Nitrato , Estrés Salino , Arabidopsis/genética , Transporte Biológico
6.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569822

RESUMEN

The AT-hook motif nuclear localized (AHL) gene family is a highly conserved transcription factor critical for the growth, development, and stress tolerance of plants. However, the function of the AHL gene family in Brassica rapa (B. rapa) remains unclear. In this study, 42 AHL family members were identified from the B. rapa genome and mapped to nine B. rapa chromosomes. Two clades have formed in the evolution of the AHL gene family. The results showed that most products encoded by AHL family genes are located in the nucleus. Gene duplication was common and expanded the BrAHL gene family. According to the analysis of cis-regulatory elements, the genes interact with stress responses (osmotic, cold, and heavy metal stress), major hormones (abscisic acid), and light responses. In addition, the expression profiles revealed that BrAHL genes are widely expressed in different tissues. BrAHL16 was upregulated at 4 h under drought stress, highly expressed under cadmium conditions, and downregulated in response to cold conditions. BrAHL02 and BrAHL24 were upregulated at the initial time point and peaked at 12 h under cold and cadmium stress, respectively. Notably, the interactions between AHL genes and proteins under drought, cold, and heavy metal stresses were observed when predicting the protein-protein interaction network.


Asunto(s)
Brassica rapa , Brassica rapa/metabolismo , Genes de Plantas , Perfilación de la Expresión Génica , Cadmio/metabolismo , Genoma de Planta , Estrés Fisiológico/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445710

RESUMEN

The ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) gene family plays a pivotal role in plant growth, induction of phytohormones, and the abiotic stress response. However, the AS2 gene family in Brassica rapa has yet to be investigated. In this study, we identified 62 AS2 genes in the B. rapa genome, which were classified into six subfamilies and distributed across 10 chromosomes. Sequence analysis of BrAS2 promotors showed that there are several typical cis-elements involved in abiotic stress tolerance and stress-related hormone response. Tissue-specific expression analysis showed that BrAS2-47 exhibited ubiquitous expression in all tissues, indicating it may be involved in many biological processes. Gene expression analysis showed that the expressions of BrAS2-47 and BrAS2-10 were significantly downregulated under cold stress, heat stress, drought stress, and salt stress, while BrAS2-58 expression was significantly upregulated under heat stress. RT-qPCR also confirmed that the expression of BrAS2-47 and BrAS2-10 was significantly downregulated under cold stress, drought stress, and salt stress, and in addition BrAS2-56 and BrAS2-4 also changed significantly under the three stresses. In addition, protein-protein interaction (PPI) network analysis revealed that the Arabidopsis thaliana genes AT5G67420 (homologous gene of BrAS2-47 and BrAS2-10) and AT3G49940 (homologous gene of BrAS2-58) can interact with NIN-like protein 7 (NLP7), which has been previously reported to play a role in resistance to adverse environments. In summary, our findings suggest that among the BrAS2 gene family, BrAS2-47 and BrAS2-10 have the most potential for the regulation of abiotic stress tolerance. These results will facilitate future functional investigations of BrAS2 genes in B. rapa.


Asunto(s)
Arabidopsis , Brassica rapa , Brassica rapa/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Genoma de Planta , Perfilación de la Expresión Génica , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Filogenia
8.
Cells ; 12(7)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37048168

RESUMEN

Heavy metal-associated proteins (HMPs) participate in heavy metal detoxification. Although HMPs have been identified in several plants, no studies to date have identified the HMPs in Brassica rapa (B. rapa). Here, we identified 85 potential HMPs in B. rapa by bioinformatic methods. The promoters of the identified genes contain many elements associated with stress responses, including response to abscisic acid, low-temperature, and methyl jasmonate. The expression levels of BrHMP14, BrHMP16, BrHMP32, BrHMP41, and BrHMP42 were upregulated under Cu2+, Cd2+, Zn2+, and Pb2+ stresses. BrHMP06, BrHMP30, and BrHMP41 were also significantly upregulated after drought treatment. The transcripts of BrHMP06 and BrHMP11 increased mostly under cold stress. After applying salt stress, the expression of BrHMP02, BrHMP16, and BrHMP78 was induced. We observed increased BrHMP36 expression during the self-incompatibility (SI) response and decreased expression in the compatible pollination (CP) response during pollen-stigma interactions. These changes in expression suggest functions for these genes in HMPs include participating in heavy metal transport, detoxification, and response to abiotic stresses, with the potential for functions in sexual reproduction. We found potential co-functional partners of these key players by protein-protein interaction (PPI) analysis and found that some of the predicted protein partners are known to be involved in corresponding stress responses. Finally, phosphorylation investigation revealed many phosphorylation sites in BrHMPs, suggesting post-translational modification may occur during the BrHMP-mediated stress response. This comprehensive analysis provides important clues for the study of the molecular mechanisms of BrHMP genes in B. rapa, especially for abiotic stress and pollen-stigma interactions.


Asunto(s)
Brassica rapa , Brassica rapa/genética , Brassica rapa/metabolismo , Polinización , Estrés Fisiológico/genética , Estrés Salino , Polen
10.
Nature ; 614(7947): 303-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697825

RESUMEN

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Asunto(s)
Brassicaceae , Flores , Hibridación Genética , Proteínas de Plantas , Polinización , Brassicaceae/genética , Brassicaceae/metabolismo , Depresión Endogámica , Óxido Nítrico/metabolismo , Fosfotransferasas/metabolismo , Fitomejoramiento , Proteínas de Plantas/metabolismo , Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especificidad de la Especie , Flores/metabolismo , Autofecundación
11.
Cells ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496989

RESUMEN

Glutamate receptors (GLRs) are involved in multiple functions during the plant life cycle through affecting the Ca2+ concentration. However, GLRs in Brassica species have not yet been reported. In this study, 16 glutamate receptor-like channels (GLR) belonged to two groups were identified in the Brassica rapa (B. rapa) genome by bioinformatic analysis. Most members contain domains of ANF_receptor, Peripla_BP_6, Lig_chan, SBP_bac_3, and Lig_chan_Glu_bd that are closely related to glutamate receptor channels. This gene family contains many elements associated with drought stress, low temperature stress, methyl jasmonate (MeJA), salicylic acid (SA), and other stress resistance. Gene expression profiles showed that BraGLR genes were expressed in roots, stems, leaves, flowers, and siliques. BraGLR5 expression was elevated after drought stress in drought-sensitive plants. BraGLR1, BraGLR8, and BraGLR11 expression were significantly upregulated after salt stress. BraGLR3 expression is higher in the female sterile-line mutants than in the wild type. The expression levels of BraGLR6, BraGLR9, BraGLR12, and BraGLR13 were significantly higher in the male sterile-line mutants than in the wild type. The expression of most BraGLRs increased after self-pollination, with BraGLR9 exhibiting the greatest increase. These results suggest that BraGLRs play an important role in abiotic stress tolerance and sexual reproduction.


Asunto(s)
Brassica rapa , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Estrés Fisiológico/genética , Brassica rapa/metabolismo
12.
Front Genet ; 13: 1044853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386810

RESUMEN

AGC protein kinases play important roles in regulating plant growth, immunity, and cell death. However, the function of AGC in Brassica rapa has not yet been clarified. In this study, 62 BrAGC genes were identified, and these genes were distributed on 10 chromosomes and divided into six subfamilies. Analysis of gene structure and conserved motifs showed that the activation segment of BrAGC genes was highly conserved, and genes of the same subfamily showed higher sequence and structural similarity. Collinearity analysis revealed that BrAGCs were more closely related to AtAGCs than to OsAGCs. Expression profile analysis revealed that BrAGCs were preferentially expressed in flowers and BrAGC26, BrAGC33, and BrAGC04 were preferentially expressed in the stigma; the expression of these genes was significantly upregulated after self-incompatibility pollination, and the expression of BrAGC13 and BrAGC32 was significantly upregulated after cross-pollination. In addition, several typical cis-elements involved in the stress response were identified in BrAGC promoters. The expression levels of BrAGC37 and BrAGC44 significantly varied under different types of abiotic stress. Collectively, we identified that BrAGC26, BrAGC33, and BrAGC44 have the greatest potential in regulating pollen-pistil interaction and abiotic stress tolerance, respectively. Our findings will aid future functional investigations of BrAGCs in B. rapa.

13.
Front Plant Sci ; 13: 977881, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092397

RESUMEN

High temperature negatively affects reproductive process significantly, leading to tremendous losses in crop quality and yield. Zhinengcong (ZNC), a crude extract from the endophytic fungus Paecilomyces variotii, has been shown to improve plant growth and resistance to biotic and abiotic stresses. We show here that ZNC can also alleviate heat stress-induced reproductive defects in Solanum lycopersicum, such as short-term heat-induced inhibition on pollen viability, germination and tube growth, and long-term heat stress-induced pollen developmental defects. We further demonstrated that ZNC alleviates heat stress by downregulating the expressions of ROS production-related genes, RBOHs, and upregulating antioxidant related genes and the activities of the corresponding enzymes, thus preventing the over accumulation of heat-induced reactive oxygen species (ROS) in anther, pollen grain and pollen tube. Furthermore, spraying application of ZNC onto tomato plants under long-term heat stress promotes fruit and seed bearing in the field. In summary, plant endophytic fungus extract ZNC promotes the reproductive process and yield of tomato plants under heat stress and presents excellent potential in agricultural applications.

14.
Curr Opin Plant Biol ; 69: 102279, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36029655

RESUMEN

Explosive advances have been made in the molecular understanding of pollen-pistil interactions that underlie reproductive success in flowering plants in the past three decades. Among the most notable is the discovery of pollen tube attractants [1∗,2∗]. The roles these molecules play in facilitating conspecific precedence thus promoting interspecific genetic isolation are also emerging [3-5]. Male-female interactions during the prezygotic phase and contributions from the male and female gametophytes have been comprehensively reviewed recently. Here, we focus on key advances in understanding the mechanistic underpinnings of how these interactions overcome barriers at various pollen-pistil interfaces along the pollen tube growth pathway to facilitate fertilization by desirable mates.


Asunto(s)
Flores , Polen , Óvulo Vegetal/genética , Polen/genética , Tubo Polínico/genética , Polinización
15.
Curr Biol ; 31(14): 3004-3016.e4, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34015250

RESUMEN

Most plants in the Brassicaceae evolve self-incompatibility (SI) to avoid inbreeding and generate hybrid vigor. Self-pollen is recognized by the S-haplotype-specific interaction of the pollen ligand S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein [SCR]) and its stigma-specific S-locus receptor kinase (SRK). However, mechanistically much remains unknown about the signaling events that culminate in self-pollen rejection. Here, we show that self-pollen triggers high levels of reactive oxygen species (ROS) in stigma papilla cells to mediate SI in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). We found that stigmatic ROS increased after self-pollination but decreased after compatible(CP)- pollination. Reducing stigmatic ROS by scavengers or suppressing the expression of respiratory burst oxidase homologs (Rbohs), which encode plant NADPH oxidases that produce ROS, both broke down SI. On the other hand, increasing the level of ROS inhibited the germination and penetration of compatible pollen on the stigma, mimicking an incompatible response. Furthermore, suppressing a B. rapa FERONIA (FER) receptor kinase homolog or Rac/Rop guanosine triphosphatase (GTPase) signaling effectively reduced stigmatic ROS and interfered with SI. Our results suggest that FER-Rac/Rop signaling-regulated, NADPH oxidase-produced ROS is an essential SI response leading to self-pollen rejection.


Asunto(s)
Brassica rapa , Brassica , Brassica rapa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Especies Reactivas de Oxígeno/metabolismo
16.
Front Plant Sci ; 11: 586901, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33365040

RESUMEN

Self-incompatibility (SI) is a genetic mechanism flowering plants adopted to reject self-pollen and promote outcrossing. In the Brassicaceae family plants, the stigma tissue plays a key role in self-pollen recognition and rejection. We reported earlier in Chinese cabbage (Brassica rapa) that stigma tissue showed upregulated ethylene responses and programmed cell death (PCD) upon compatible pollination, but not in SI responses. Here, we show that SI is significantly compromised or completely lost in senescent flowers and young flowers of senescent plants. Senescence upregulates senescence-associated genes in B. rapa. Suppressing their expression in young stigmas by antisense oligodeoxyribonucleotide abolishes compatible pollination-triggered PCD and inhibits the growth of compatible pollen tubes. Furthermore, ethylene biosynthesis genes and response genes are upregulated in senescent stigmas, and increasing the level of ethylene or inhibiting its response increases or decreases the expression of senescence-associated genes, respectively. Our results show that senescence causes PCD in stigmatic papilla cells and is associated with the breakdown of SI in Chinese cabbage and in radish.

17.
Nature ; 579(7800): 561-566, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214247

RESUMEN

Species that propagate by sexual reproduction actively guard against the fertilization of an egg by multiple sperm (polyspermy). Flowering plants rely on pollen tubes to transport their immotile sperm to fertilize the female gametophytes inside ovules. In Arabidopsis, pollen tubes are guided by cysteine-rich chemoattractants to target the female gametophyte1,2. The FERONIA receptor kinase has a dual role in ensuring sperm delivery and blocking polyspermy3. It has previously been reported that FERONIA generates a female gametophyte environment that is required for sperm release4. Here we show that FERONIA controls several functionally linked conditions to prevent the penetration of female gametophytes by multiple pollen tubes in Arabidopsis. We demonstrate that FERONIA is crucial for maintaining de-esterified pectin at the filiform apparatus, a region of the cell wall at the entrance to the female gametophyte. Pollen tube arrival at the ovule triggers the accumulation of nitric oxide at the filiform apparatus in a process that is dependent on FERONIA and mediated by de-esterified pectin. Nitric oxide nitrosates both precursor and mature forms of the chemoattractant LURE11, respectively blocking its secretion and interaction with its receptor, to suppress pollen tube attraction. Our results elucidate a mechanism controlled by FERONIA in which the arrival of the first pollen tube alters ovular conditions to disengage pollen tube attraction and prevent the approach and penetration of the female gametophyte by late-arriving pollen tubes, thus averting polyspermy.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Fertilización , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Óxido Nítrico/metabolismo , Óvulo Vegetal/metabolismo , Pectinas/metabolismo , Fosfotransferasas/metabolismo , Tubo Polínico/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Óvulo Vegetal/citología , Pectinas/química , Tubo Polínico/citología
18.
Biochem Biophys Res Commun ; 525(3): 600-606, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32115144

RESUMEN

Self-incompatibility (SI) is a genetic mechanism most flowering plants adopted to reject self-pollen thus avoid inbreeding. In the Brassicaceae, self-pollen recognition triggers downstream signaling pathways to reject self-pollen. However, the downstream signaling pathways are not very clear. Here we show that ethylene negatively mediates self-incompatibility response of Chinese cabbage (Brassica rapa L. ssp. Pekinensis) via PCD in papilla cells. We found that ethylene signaling genes were upregulated after cross-pollination. Treating stigmas with ethylene, or suppressing the expression of a negative regulator of ethylene signaling, CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1), caused PCD in papilla cells and broke down the self-incompatibility. On the other hand, treating stigmas with ethylene inhibitors, or suppressing the expression of ethylene-responsive factors (ERFs), inhibited PCD in papilla cells and the compatible pollination. Our study identified an additional signaling pathway mediating self-incompatibility responses in the Brassicaceae and also developed a new method in overcoming self-incompatibility to improve the efficiency of inbred line propagation in agriculture practice.


Asunto(s)
Brassica rapa/fisiología , Etilenos/farmacología , Autoincompatibilidad en las Plantas con Flores/efectos de los fármacos , Apoptosis/efectos de los fármacos , Brassica rapa/efectos de los fármacos , Compuestos Organofosforados/farmacología , Polinización/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
19.
FEBS Lett ; 592(14): 2392-2394, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30035296
20.
Curr Biol ; 28(5): 666-675.e5, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29456142

RESUMEN

Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Señalización del Calcio/genética , Fosfotransferasas/genética , Estrés Salino/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Fosfotransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...