Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nano Lett ; 24(14): 4132-4140, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38534013

RESUMEN

Inspired by the retina, artificial optoelectronic synapses have groundbreaking potential for machine vision. The field-effect transistor is a crucial platform for optoelectronic synapses that is highly sensitive to external stimuli and can modulate conductivity. On the basis of the decent optical absorption, perovskite materials have been widely employed for constructing optoelectronic synaptic transistors. However, the reported optoelectronic synaptic transistors focus on the static processing of independent stimuli at different moments, while the natural visual information consists of temporal signals. Here, we report CsPbBrI2 nanowire-based optoelectronic synaptic transistors to study the dynamic responses of artificial synaptic transistors to time-varying visual information for the first time. Moreover, on the basis of the dynamic synaptic behavior, a hardware system with an accuracy of 85% is built to the trajectory of moving objects. This work offers a new way to develop artificial optoelectronic synapses for the construction of dynamic machine vision systems.

2.
J Am Chem Soc ; 146(10): 6893-6904, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426856

RESUMEN

Owing to the electrical conductivity and periodic porosity, conductive metal-organic framework (cMOF) ultrathin films open new perspectives to photocatalysis. The space-selective assembly of catalytic sites and photosensitizers in/on cMOF is favorable for promoting the separation of photogenerated carriers and mass transfer. However, the controllable integration of functional units into the cMOF film is rarely reported. Herein, via the synergistic effect of steric hindrance and an electrostatic-driven strategy, the dinuclear-metal molecular catalysts (DMC) and perovskite (PVK) quantum dot photosensitizers were immobilized into channels and onto the surface of cMOF ultrathin films, respectively, affording [DMC@cMOF]-PVK film photocatalysts. In this unique heterostructure, cMOF not only facilitated the charge transfer from PVK to DMC but also guaranteed mass transfer. Using H2O as an electron donor, [DMC@cMOF]-PVK realized a 133.36 µmol·g-1·h-1 CO yield in photocatalytic CO2 reduction, much higher than PVK and DMC-PVK. Owing to the excellent light transmission of films, multilayers of [DMC@cMOF]-PVK were integrated to increase the CO yield per unit area, and the 10-layer device realized a 1115.92 µmol·m-2 CO yield in 4 h, which was 8-fold higher than that of powder counterpart. This work not only lightens the development of cMOF-based composite films but also paves a novel avenue for an ultrathin film photocatalyst.

3.
Adv Mater ; 34(39): e2205186, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934874

RESUMEN

Assembling molecular catalytic centers into crosslinked networks is widely used to fabricate heterogeneous catalysts but they often suffer loss in activity and selectivity accompanied by unclear causes. Here, a strategy for the construction of heterogeneous catalysts to induce activity and selectivity by bottom-up introduction of segregated electron-conduction and mass-transport interfaces into the catalytic materials is reported. The catalytic skeletons are designed to possess different π orderings for electron motion and the open channels are tailored to install finely engineered walls for mass transport, so that origins of activity and selectivity are correlated. The resultant covalent organic framework catalysts with ordered π skeletons and solvophobic pores increase activity by two orders of magnitude, enhance selectivity and energy efficiency by 70-fold, and broaden the voltage range, to promote CO2 transformation under ambient conditions. The results open a way to precise interfacial design of actionable heterogeneous catalysts for producing feedstocks from CO2 .

4.
Adv Mater ; 34(22): e2104166, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34416051

RESUMEN

2D organic semiconductor crystals (2DOSCs) have extraordinary charge transport capability, adjustable photoelectric properties, and superior flexibility, and have stimulated continuous research interest for next-generation electronic and optoelectronic applications. The prerequisite for achieving large-area and high-throughput optoelectronic device integration is to fabricate high-resolution 2DOSC arrays. Patterned substrate- and template-assisted self-assembly is an effective strategy to fabricate OSC arrays. However, the film thickness is difficult to control due to the complicated crystallization process during solvent evaporation. Therefore, the manufacturing of 2DOSC arrays with high-resolution and controllable molecular-layer numbers through solution-based patterning methods remains a challenge. Herein, a two-step strategy to produce high-resolution layer-controlled 2DOSC arrays is reported. First, large-scale 2DOSCs with well-defined layer numbers are obtained by a solution-processed organic semiconductor crystal engineering method. Next, the high-resolution layer-controlled 2DOSC arrays are fabricated by a polydimethylsiloxane mold-assisted selective contact evaporation printing technique. The organic field-effect transistors (OFETs) based on 2DOSC arrays have high electrical performance and excellent uniformity. The 2,6-bis(4-hexylphenyl)anthracene 2DOSC arrays-based OFETs have a small variation of 12.5% in mobility. This strategy can be applied to various organic semiconductors and pattern arrays. These demonstrations will offer more opportunities for 2DOSCs for integrated optoelectronic devices.

5.
Small Methods ; 5(12): e2100676, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928035

RESUMEN

Stretchable organic field-effect transistors (OFETs) are one of the essential building blocks for next-generation wearable electronics due to the high stretchability of OFET well matching with the large deformation of human skin. In recent years, some significant progress of stretchable OFETs have already been made via the strategies of stretchable molecular design and geometry engineering. However, the main opportunity and challenge of stretchable OFETs is still to simultaneously improve their stretchability and mobility. This review covers the recent advances in the research of stretchable OFETs with high mobility. First, the core stretchable materials are summarized, including organic semiconductors, electrodes, dielectrics, and substrates. Second, the materials and healing mechanism of self-healing OFET are summarized in detail. Subsequently, their different configurations and the potential applications are summarized. Finally, an outlook of future research directions and challenges in this area is presented.


Asunto(s)
Compuestos Orgánicos/química , Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Elasticidad , Electrodos , Diseño de Equipo , Humanos
6.
Nat Commun ; 11(1): 923, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066723

RESUMEN

The precise circuit of the substantia nigra pars reticulata (SNr) involved in temporal lobe epilepsy (TLE) is still unclear. Here we found that optogenetic or chemogenetic activation of SNr parvalbumin+ (PV) GABAergic neurons amplifies seizure activities in kindling- and kainic acid-induced TLE models, whereas selective inhibition of these neurons alleviates seizure activities. The severity of seizures is bidirectionally regulated by optogenetic manipulation of SNr PV fibers projecting to the parafascicular nucleus (PF). Electrophysiology combined with rabies virus-assisted circuit mapping shows that SNr PV neurons directly project to and functionally inhibit posterior PF GABAergic neurons. Activity of these neurons also regulates seizure activity. Collectively, our results reveal that a long-range SNr-PF disinhibitory circuit participates in regulating seizure in TLE and inactivation of this circuit can alleviate severity of epileptic seizures. These findings provide a better understanding of pathological changes from a circuit perspective and suggest a possibility to precisely control epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal/fisiopatología , Núcleos Talámicos Intralaminares/fisiopatología , Vías Nerviosas/fisiopatología , Sustancia Negra/fisiopatología , Animales , Modelos Animales de Enfermedad , Electrodos Implantados , Epilepsia del Lóbulo Temporal/diagnóstico , Neuronas GABAérgicas/fisiología , Humanos , Núcleos Talámicos Intralaminares/citología , Masculino , Ratones , Ratones Transgénicos , Optogenética , Técnicas de Placa-Clamp , Índice de Severidad de la Enfermedad , Técnicas Estereotáxicas , Sustancia Negra/citología
7.
Adv Mater ; 32(12): e1908388, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32053256

RESUMEN

Solution-printed organic single-crystalline films hold great potential for achieving low-cost manufacturing of large-area and flexible electronics. For practical applications, organic field-effect transistor arrays must exhibit high performance and small device-to-device variation. However, scalable fabrication of highly aligned organic crystalline arrays is rather difficult due to the lack of control over the crystallographic orientation, crystal uniformity, and thickness. Here, a facile solution-printing method to fabricate centimeter-sized highly aligned organic crystalline arrays with a thickness of a few molecular layers is reported. In this study, the solution shearing technique is used to produce large-area, organic highly crystalline thin films. Water-soluble ink is printed on the hydrophobic surface of organic crystalline films, to selectively protect it, followed by etching. It is shown that the addition of a surfactant dramatically changes the fluid drying dynamics and increases the contact line friction of the aqueous solution to the underlying nonwetting organic crystalline film. As a result, centimeter-scale highly aligned organic crystalline arrays are successfully prepared on different substrates. The devices based on organic crystalline arrays show good performance and uniformity. This study demonstrates that solution printing is close to industrial application and also expands its applicability to various printed flexible electronics.

8.
Adv Mater ; 31(16): e1807975, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30828885

RESUMEN

Control over the morphology and crystallinity of small-molecule organic semiconductor (OSC) films is of key importance to enable high-performance organic optoelectronic devices. However, such control remains particularly challenging for solution-processed OSC devices because of the complex crystallization kinetics of small-molecule OSC materials in the dynamic flow of inks. Here, a simple yet effective channel-restricted screen-printing method is reported, which uses small-molecule OSCs/insulating polymer to yield large-grained small-molecule OSC thin-film arrays with good crystallization and preferred orientation. The use of cross-linked organic polymer banks produces a confinement effect to trigger the outward convective flow at two sides of the channel by the fast solvent evaporation, which imparts the transport of small-molecule OSC solutes and promotes the growth of small-molecule OSC crystals parallel to the channel. The small-molecule OSC thin-film array produced by screen printing exhibits excellent performance characteristics with an average mobility of 7.94 cm2 V-1 s-1 and a maximum mobility of 12.10 cm2 V-1 s-1 , which are on par with its single crystal. Finally, screen printing can be carried out using a flexible substrate, with good performance. These demonstrations bring this robust screen-printing method closer to industrial application and expand its applicability to various flexible electronics.

9.
Org Lett ; 18(19): 5170-5173, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27658859

RESUMEN

A Ni-mediated cascade to a stereoselective synthesis of trans-tetrahydronaphtho[2,3-b]furans is efficiently achieved for the first time. The mild reductive system can be easily generated from inexpensive and air-stable materials and shows a broad positional tolerance of substituents that were previously difficult or impossible to access by other methods. Facile syntheses toward new analogues of therapeutic agents (iso)deoxypodophyllotoxin are also reported. In addition, the inherent substrate control is disclosed for the observed unique stereoselectivities during cyclizations.

10.
Proc Natl Acad Sci U S A ; 103(33): 12540-5, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16894145

RESUMEN

Fourteen ORFs have been identified in the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) genome. ORF 3a of SARS-CoV codes for a recently identified transmembrane protein, but its function remains unknown. In this study we confirmed the 3a protein expression and investigated its localization at the surface of SARS-CoV-infected or 3a-cDNA-transfected cells. Our experiments showed that recombinant 3a protein can form a homotetramer complex through interprotein disulfide bridges in 3a-cDNA-transfected cells, providing a clue to ion channel function. The putative ion channel activity of this protein was assessed in 3a-complement RNA-injected Xenopus oocytes by two-electrode voltage clamp. The results suggest that 3a protein forms a potassium sensitive channel, which can be efficiently inhibited by barium. After FRhK-4 cells were transfected with an siRNA, which is known to suppress 3a expression, followed by infection with SARS-CoV, the released virus was significantly decreased, whereas the replication of the virus in the infected cells was not changed. Our observation suggests that SARS-CoV ORF 3a functions as an ion channel that may promote virus release. This finding will help to explain the highly pathogenic nature of SARS-CoV and to develop new strategies for treatment of SARS infection.


Asunto(s)
Canales Iónicos/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , Proteínas Virales/metabolismo , Animales , Línea Celular , Humanos , Canales Iónicos/genética , Oocitos/citología , Oocitos/fisiología , Sistemas de Lectura Abierta , Técnicas de Placa-Clamp , Potasio/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Proteínas del Envoltorio Viral , Proteínas Virales/genética , Proteínas Viroporinas , Replicación Viral , Xenopus laevis
11.
Biomed Environ Sci ; 16(3): 246-55, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-14631830

RESUMEN

OBJECTIVE: The causal agent for SARS is considered as a novel coronavirus that has never been described both in human and animals previously. The stability of SARS coronavirus in human specimens and in environments was studied. METHODS: Using a SARS coronavirus strain CoV-P9, which was isolated from pharyngeal swab of a probable SARS case in Beijing, its stability in mimic human specimens and in mimic environment including surfaces of commonly used materials or in household conditions, as well as its resistance to temperature and UV irradiation were analyzed. A total of 10(6) TCID50 viruses were placed in each tested condition, and changes of the viral infectivity in samples after treatments were measured by evaluating cytopathic effect (CPE) in cell line Vero-E6 at 48 h after infection. RESULTS: The results showed that SARS coronavirus in the testing condition could survive in serum, 1:20 diluted sputum and feces for at least 96 h, whereas it could remain alive in urine for at least 72 h with a low level of infectivity. The survival abilities on the surfaces of eight different materials and in water were quite comparable, revealing reduction of infectivity after 72 to 96 h exposure. Viruses stayed stable at 4 degrees C, at room temperature (20 degrees C) and at 37 degrees C for at least 2 h without remarkable change in the infectious ability in cells, but were converted to be non-infectious after 90-, 60- and 30-min exposure at 56 degrees C, at 67 degrees C and at 75 degrees C, respectively. Irradiation of UV for 60 min on the virus in culture medium resulted in the destruction of viral infectivity at an undetectable level. CONCLUSION: The survival ability of SARS coronavirus in human specimens and in environments seems to be relatively strong. Heating and UV irradiation can efficiently eliminate the viral infectivity.


Asunto(s)
Calor , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , Rayos Ultravioleta , Ambiente , Humanos , Faringe/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/aislamiento & purificación , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...