Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 487, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824521

RESUMEN

Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.


Asunto(s)
Carbón Orgánico , Clorofila , Germinación , Potasio , Estrés Salino , Sodio , Triticum , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/efectos de los fármacos , Triticum/fisiología , Germinación/efectos de los fármacos , Carbón Orgánico/farmacología , Clorofila/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Suelo/química , Grano Comestible/crecimiento & desarrollo , Grano Comestible/efectos de los fármacos , Grano Comestible/metabolismo , Pakistán , Salinidad
2.
Plants (Basel) ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38592751

RESUMEN

Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...