Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(5): 6800-6813, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439377

RESUMEN

Digital mask projection lithography (DMPL) technology is gaining significant attention due to its characteristics of free-mask, flexibility, and low cost. However, when dealing with target layouts featuring sizes smaller than the wavelength scale, accurately producing resist patterns that closely match the target layout using conventional methods to design the modulation coefficients of digital masks produced by spatial light modulators (SLM) becomes challenging. Here, we present digital inversion lithography technology (DILT), which offers what we believe to be a novel approach to reverse engineer the modulation coefficients of digital masks. In the case of binary amplitude modulation, DILT achieves a remarkable reduction in pattern errors (PE), reaching the original 0.26. At the same time, in the case of the gray amplitude modulation, the PE can be reduced to the original 0.05, which greatly improves the high-fidelity transfer of the target layout. This significant improvement enhances the accuracy of target design transfer. By leveraging the capabilities of DILT, DMPL can now attain higher precision and reliability, paving the way for more advanced applications in the field of micro-nano device manufacturing.

2.
Opt Lett ; 49(4): 810-813, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359188

RESUMEN

When the critical dimension (CD) of resist patterns nears the resolution limit of the digital micromirror device (DMD) maskless projection lithography (DMD-MPL), significant distortion can emerge in the silicon wafer due to the optical proximity effect (OPE). The significant distortion (breakpoints, line-end scaling, corner rounding, etc.) between resist patterns and target patterns results in reduced lithographic quality. To address this issue, we have proposed a pixel-based optical proximity correction (PB-OPC) method used for the hot-spot patterns with subwavelength sizes specifically designed for DMD-MPL. Employing an end-to-end learning neural network, the PB-OPC algorithm is both straightforward and efficient. A well-trained U-net framework facilitates the mapping from unoptimized masks to optimized masks. Experimental exposure trials have demonstrated that this method not only corrects OPC in general patterns but also effectively rectifies hot-spot patterns. The pattern error (PE) value can be reduced by about 30% in the design layouts. We believe this approach holds the potential to enhance the resolution and fidelity of resist patterns in DMD maskless lithography.

3.
Opt Lett ; 48(11): 3087-3090, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262287

RESUMEN

The Dammann grating (DG), which redistributes a collimated laser beam into a spot array with a uniform intensity, is a widely adopted approach for profile measurement. Conventional DGs for dense spot projection are binary phase gratings with precisely designed groove structures, which suffer from low efficiency, poor uniformity, and a hard-to-fabricate fine feature size when utilized for a large field of view (FOV). Here, we propose a new, to the best of our knowledge, hybrid DG architecture consisting of two different grating periods which effectively generates an engineering M2 × N2 spot array with a non-complex structural design. As a proof-of-concept, a dual-period hybrid DG with a two-scale grating period ratio of 11.88 µm/95.04 µm (∼1/8) is designed and fabricated as a means to generate a dense 72 × 72 diffraction spot array with a FOV of 17° × 17°. In addition, the DG exhibits superior performance, with a high efficiency (>60%) and a low non-uniformity (<18%) at a wavelength of 532 nm. This kind of hybrid DG constructed from photoresist patterns with a minimum feature size of ∼1.2 µm can be perfectly fabricated by maskless projection lithography for large-scale and low-cost production. The proposed dual-period hybrid DG can pave the way for depth-perception-related applications such as face unlocking and motion sensing.

4.
Opt Express ; 30(25): 45312-45326, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522939

RESUMEN

Neural network-based inverse lithography technology (NNILT) has been used to improve the computational efficiency of large-scale mask optimization for advanced photolithography. NNILT is now mostly based on labels, and its performance is affected by the quality of labels. It is difficult for NNILT to achieve high performance and extrapolation ability for mask optimization without using labels. Here, we propose a label-free NNILT (LF-NNILT), which is implemented completely without labels and greatly improves the printability of the target layouts and the manufacturability of the synthesized masks compared to the traditional ILT. More importantly, the optimization speed of LF-NNILT is two orders of magnitude faster than the traditional ILT. Furthermore, LF-NNILT is simpler to implement and can achieve better solvers to support the development of advanced lithography.


Asunto(s)
Redes Neurales de la Computación , Impresión , Tecnología
5.
Opt Express ; 30(20): 36791-36801, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258601

RESUMEN

Maskless lithography technologies have been developed and played an important role in the fabrication of functional micronano devices for microelectronics, biochips and photonics. Optical projection lithography based on digital micromirror device (DMD) is an efficient maskless lithography technology that can rapidly fabricate complex structures. The precise modulation of gap width by DMD maskless optical projection lithography (MOPL) using femtosecond laser becomes important for achieving micronano structures. Herein, we have investigated the relationship between the structure morphology and the light intensity distribution at the image plane by multi-slit diffraction model and Abbe imaging principle, and optimized the gap width more accurately by modulating exposure energy. The aperture diameter of the objective lens has a substantial effect on the pattern consistency. The continuously adjustable structural gap widths of 2144 nm, 2158 nm and 1703 nm corresponding to 6, 12, 24 pixels are obtained by varying the exposure energy in the home-built MOPL system. However, the ideal gap structure cannot be obtained only by adjusting the exposure energy when the gap width is small, such as 1 or 2 pixels. Furthermore, we have proposed an alternative way to achieve fine gap structures through the structural decomposition design and precise control of exposure energy in different regions without changing the MOPL optical system. This study would provide a promising protocol for fabricating gap microstructures with controllable configuration using MOPL technique.

6.
Nat Commun ; 13(1): 1357, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35292637

RESUMEN

It's critically important to construct arbitrary inorganic features with high resolution. As an inorganic photoresist, hydrogen silsesquioxane (HSQ) has been patterned by irradiation sources with short wavelength, such as EUV and electron beam. However, the fabrication of three- dimensional nanoscale HSQ features utilizing infrared light sources is still challenging. Here, we demonstrate femtosecond laser direct writing (FsLDW) of HSQ through multi-photon absorption process. 26 nm feature size is achieved by using 780 nm fs laser, indicating super-diffraction limit photolithography of λ/30 for HSQ. HSQ microstructures by FsLDW possess nanoscale resolution, smooth surface, and thermal stability up to 600 °C. Furthermore, we perform FsLDW of HSQ to construct structural colour and Fresnel lens with desirable optical properties, thermal and chemical resistance. This study demonstrates that inorganic features can be flexibly achieved by FsLDW of HSQ, which would be prospective for fabricating micro-nano devices requiring nanoscale resolution, thermal and chemical resistance.

7.
Opt Express ; 30(2): 2131-2142, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209360

RESUMEN

In many integrated optics systems, grating couplers are a key component of interfacing the external light source with in-plane photonic devices. Grating couplers with dual-band capability are often desired for expanding the operation spectrum of photonic systems. Here, we propose and theoretically investigate, for the first time, a 4.95 µm-8.5 µm dual-band grating coupler on a Ge-on-SOI platform. In addition to conventional structures, Bragg gratings are introduced to two wavelength division directions for crosstalk suppression. With this design, the simulated coupling efficiencies have respectively reached 59.93% and 46.38% for the 4.95 µm and 8.5 µm bands. This mid-infrared dual-band grating coupler may be useful for defense and environmental monitoring applications.

8.
Opt Express ; 30(4): 4692-4705, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209445

RESUMEN

In digital micromirror device (DMD)-based projection photolithography, the throughput largely depends on the effectiveness of the laser energy utilization, which is directly correlated to the diffraction efficiency of DMD. Here, to optimize the DMD diffraction efficiency and thus the laser energy utilization, we calculate the diffraction efficiencies Ediffraction of DMD with various pitch sizes at wavelengths ranging from 200 nm to 800 nm, using the two-dimensional blazed grating diffraction theory. Specifically, the light incident angle is optimized for 343 nm laser and 7.56 µm pitch-size DMD, and the maximum single-order diffraction efficiency Ediffraction is increased from 40% to 96%. Experimentally, we use the effective energy utilization ηeff = Ediffraction,(m,n)/Σ[Ediffraction,(m,n)] at the entrance pupil plane of the objective to verify the effectiveness of the optimized illumination angle in a lithography illumination system with parallel beams of two wavelengths (343 nm and 515 nm). The ηeff of a "blaze" order at a 34° angle of incidence can be optimized up to 88%. The experimental results are consistent with the tendency of the calculated results, indicating that this optimization model can be used to improve the energy utilization of projection lithography with the arbitrarily designable wavelengths and the DMD's pitch size.

9.
Nanotechnology ; 32(50)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34555813

RESUMEN

In this paper, silver micro/nanostructures composed of sintered nanoparticles were printed by capturing silver nanoparticles in water with 800 nm femtosecond laser trapping. Relationships of laser power, scanning speed, nanoparticle concentration, and the width and morphology of fabricated silver wire were systematically investigated. It is found that low scanning speed and high nanoparticle concentration favor the printing of silver wire with good morphology. A silver wire with width of 305 nm was printed. Electrical resistivities of printed wires are about 24 times that of bulk silver. Silver grid structures and dot arrays were printed by using this technology. Several three-dimensional silver cuboid structures were also printed. This work provides a protocol for printing of three-dimensional metallic micro/nanostructures using laser trapping. These printed structures have great application prospects in metamaterials, flexible electronics, and SERS.

10.
Nano Lett ; 21(9): 3915-3921, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33938760

RESUMEN

The emerging demand for device miniaturization and integration prompts the patterning technique of micronano-cross-scale structures as an urgent desire. Lithography, as a sufficient patterning technique, has been playing an important role in achieving functional micronanoscale structures for decades. As a promising alternative, we have proposed and demonstrated the maskless optical projection nanolithography (MLOP-NL) technique for efficient cross-scale patterning. A minimum feature size of 32 nm, which is λ/12 super resolution breaking the optical diffraction limit, has been achieved by a single exposure. Furthermore, multiscale two-dimensional micronano-hybrid structures with the size over hundreds of micrometers and the precision at tens of nanometers have been fabricated by simply controlling the exposure conditions. The proposed MLOP-NL technique provides a powerful tool for achieving cross-scale patterning with both large-scale and precise configuration with high efficiency, which can be potentially used in the fabrication of multiscale integrated microsystems.


Asunto(s)
Impresión
11.
ACS Appl Mater Interfaces ; 11(2): 1782-1789, 2019 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30608644

RESUMEN

We have introduced a novel water-soluble two-photon photoinitiator based on the host-guest interaction between 3,6-bis[2-(1-methyl-pyridinium)vinyl]-9-pentyl-carbazole diiodide (BMVPC) and cucurbit[7]uril (CB7) because most of the commercial photoinitiators have poor two-photon initiating efficiency in aqueous solutions. The binding ratio of BMVPC and CB7 was determined as 1:1 by isothermal titration calorimetry and quantum chemical calculation. The formation of the host-guest complex increases the two-photon absorption cross-section about five times, and improves the water solubility required as the photoinitiator for hydrogel fabrication. The BMVPC-CB7 inclusion complex was used as the one-component photoinitiator, and the polyethylene glycol diacrylate with promising biocompatibility was used as the hydrogel monomer to form the aqueous-phase photoresist system applied to two-photon polymerization microfabrication. A relatively low laser threshold of 4.5 mW, a high fabricating resolution of 180 nm, and the true three-dimensional (3D) fabricating capability in the aqueous solution have been obtained by using the as-prepared photoresist system. Finally, 3D engineering hydrogel scaffold microstructures with low toxicity and good biocompatibility have been fabricated and cocultured with living HeLa cells, which demonstrates the potential for further application in tissue engineering.


Asunto(s)
Materiales Biocompatibles , Hidrocarburos Aromáticos con Puentes/química , Carbazoles/química , Hidrogeles , Imidazoles/química , Rayos Láser , Andamios del Tejido/química , Materiales Biocompatibles/química , Células HeLa , Humanos , Hidrogeles/síntesis química , Hidrogeles/química , Microtecnología , Polietilenglicoles/química , Ingeniería de Tejidos
12.
ACS Appl Bio Mater ; 2(2): 697-703, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35016274

RESUMEN

Porous titanium (Ti) and its alloys fabricated by additive manufacturing (AM) techniques have attractive potential for dental and bone defect repair fields. Understanding the relationship between cells and the surface of the as-built three-dimensional (3D) scaffold interactions is not only necessary for tissue engineering but also promising for improving the fabrication process in the manufacture of artificial implants by AM technology. In this study, we have aimed to investigate the cell behavior including adhesion and proliferation of fibroblasts (L929) on Ti-6Al-4 V scaffolds fabricated by the electron beam melting method. The porosities of Ti-6Al-4 V scaffolds are 0% (compact), 60%, and 70%, respectively. Different cell behaviors have been observed from all of the specimens after 4 and 8 days of cell incubation. The present result indicates that, besides the surface roughness, the surface topography of specimens should also be taken into consideration to investigate the interaction between implants and cells. Therefore, this study would provide several possibilities for improving the osteointegration functions of the manufactured porous metallic implants in orthopedic and dental applications.

13.
ACS Appl Bio Mater ; 2(7): 3077-3083, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030799

RESUMEN

The biocompatibility of the three-dimensional (3D) hydrogel cell scaffolds that sodium hyaluronate (SH) and carboxymethyl chitosan (Chitosan) has been investigated. The minimum processing threshold of 2.94 mW and the feature line width of 80 nm have been obtained by the two-photon polymerization (TPP) technology using the as-prepared biocompatible photoresist. Through tuning the contents of the cross-linker in the hydrogel, the mechanical property of 3D hydrogel scaffold can be optimized to ensure the stability and affinity of scaffold. Furthermore, we have fabricated the SH and Chitosan assisted 3D hydrogel cell scaffolds and investigated the biocompatibility. This study provides a facile method to develop 3D biocompatible hydrogel cell scaffold, which would open up new avenues for the potential application in tissue engineering.

14.
ACS Omega ; 3(4): 3737-3743, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023877

RESUMEN

In this study, two kinds of novel carbazole-based ethynylpyridine salts: 3,6-bis[2-(1-methylpyridinium)ethynyl]-9-pentyl-carbazole diiodide (BMEPC) and 3,6-bis[2-(1-methylpyridinium)ethynyl]-9-methyl-carbazole diiodide (BMEMC) have been employed as photosensitizers owing to their excellent antibacterial activity. These molecules possess symmetric A-π-D-π-A-type structures, which would bring in the unique optical properties. The inhibition zone measurement of a gradient concentration from 0 to 100 µM showed BMEPC and BMEMC photoinduced antibacterial activity against Escherichia coli. Diameters of zone of inhibition were up to 15 and 14 mm under laser irradiations. Under the exposure of the laser of 442 nm with a power density of 20 mW/cm2, the minimum inhibitory concentrations (MICs) of BMEPC on E. coli were between 3.5 and 6.9 µM and that of BMEMC were between 9.4 and 18.8 µM, respectively. In the dark experiments as a control, the MIC value is between 6.9 and 13.8 µM for BMEPC, whereas it is between 187.5 and 225.0 µM for BMEMC. By the comparison of the MIC values of BMEPC and BMEMC with laser irradiation and in dark, the laser-induced toxicity on bacteria is more evident, though both of the derivatives have dark toxicity. With the laser irradiation duration of 30 s and 10 min for BMEPC and BMEMC, respectively, the survival rate of E. coli approximates zero. An antibacterial mechanism has been proposed based on the electron paramagnetic resonance characterization, which indicates that a nitride radical is generated under laser irradiation. The carbazole-based ethynylpyridine photosensitizers would provide high potential for further applications in photodynamic therapy.

15.
Sci Rep ; 7: 41757, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28150712

RESUMEN

Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 103 V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

16.
Appl Opt ; 55(17): 4759-62, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27409036

RESUMEN

We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81 µJ/pulse for single mode lasing emission and 2.25 µJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

17.
J Nanosci Nanotechnol ; 16(3): 2319-24, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27455636

RESUMEN

Nanodiamond, which has a lattice defect, the energy band gap and good biocompatibility, is an ideal inorganic fluorescent imaging material for cells. However, the nanodiamond aggregation is not exactly suitable for cells' endocytosis if the size is too small or too big. Therefore, it has a profound meaning to modify the surface of nanodiamond and control the dispersion of nanodiamond aggregate. In this study, the surface of the detonated nanodiamond is modified into carboxylated nanodiamond by using the method of mixed acid oxidation. Then, the nanodiamond aggregates' dispersion in water is regulated by adjusting the pH, which is first discussed as a factor influencing the size of nanodiamond aggregation. This process further induces the corresponding change of the electrostatic force between nanoparticles, improves its applicability in the field of living cell fluorescence imaging.


Asunto(s)
Diamante , Nanoestructuras , Imagen Óptica/métodos , Ácidos Carboxílicos/química , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Propiedades de Superficie , Agua
18.
Phys Chem Chem Phys ; 18(7): 5306-15, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26817423

RESUMEN

We demonstrate low threshold lasing oscillation in a photonic crystal (PhC) laser by using tert-butyl Rhodamine B (t-Bu-RhB) doped gain media. Lactonic t-Bu-RhB is synthesized to improve doping concentration in polymethylmethacrylate (PMMA) films, and then isomerized to the zwitterion form to achieve highly fluorescent gain medium. The t-Bu-RhB doped PMMA film is sandwiched by a pair of polystyrene colloidal crystals to construct a PhC resonating cavity. Single-mode laser oscillation at 592 nm is observed when the PhC resonating cavity is pumped by a Nd:YAG laser. The lasing threshold is 0.12 MW cm(-2) utilizing 6.9 wt% t-Bu-RhB doped PMMA films, which is only 1/60 of that with 3 wt% t-Bu-RhB doped PMMA films. The concentration-dependent lasing action is attributed to different gain factors of the t-Bu-RhB doped PMMA films. Furthermore, a spatially and spectrally coherent laser beam from the PhC resonating cavity is verified by exploring the far-field image and angular dependence of the lasing emission. The approach provides a facile and efficient strategy to reduce the lasing threshold for fabricating low threshold PhC lasers.

19.
Opt Lett ; 40(20): 4783-6, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469619

RESUMEN

We describe how the transformation-optics technique can be used to design an effective medium mimicking the conical curvature singularity. Anholonomic coordinate transformation gives rise to linear topological defects that break the rotational symmetry. The bending and splitting of the optical beams are found analytically and numerically, depending on the incident direction and the topological charge. Beyond their practical applications to omnidirectional beam steering for photonics, our findings set forth an attractive realm to simulate the relevant physical phenomena in the optical laboratory.

20.
Sci Rep ; 5: 12400, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26202477

RESUMEN

The structure of bio-carriers is one of the key operational characteristics of a biofilm reactor. The goal of this study is to develop a series of novel fullerene-type bio-carriers using the three-dimensional printing (3DP) technique. 3DP can fabricate bio-carriers with more specialized structures compared with traditional fabrication processes. In this research, three types of fullerene-type bio-carriers were fabricated using the 3DP technique and then compared with bio-carrier K3 (from AnoxKaldnes) in the areas of physicochemical properties and biofilm growth. Images acquired by 3D profiling and SEM indicated that the surface roughness of the 3DP bio-carrier was greater than that of K3. Furthermore, contact angle data indicated that the 3DP bio-carriers were more hydrophilic than K3. The biofilm on the 3DP bio-carriers exhibited higher microbial activity and stronger adhesion ability. These findings were attributed to excellent mass transfer of the substrate (and oxygen) between the vapour-liquid-solid tri-phase system and to the surface characteristics. It is concluded that the novel 3DP fullerene-type bio-carriers are ideal carriers for biofilm adherence and growth.


Asunto(s)
Reactores Biológicos/microbiología , Impresión Molecular/métodos , Nylons/química , Aguas Residuales/microbiología , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Membranas Artificiales , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...