Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Cell Rep ; 43(9): 114691, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39235944

RESUMEN

The strategy of lowering cholesterol levels by promoting cholesterol excretion is still lacking, and few molecular targets act on multiple cholesterol metabolic processes. In this study, we find that Nogo-B deficiency/inhibition simultaneously promotes hepatic uptake of cholesterol and cholesterol excretion. Nogo-B deficiency decreases cholesterol levels by activating ATP-binding cassette transporters (ABCs), apolipoprotein E (ApoE), and low-density lipoprotein receptor (LDLR) expression. We discover that Nogo-B interacts with liver X receptor α (LXRα), and Nogo-B deficiency inhibits ubiquitination degradation of LXRα, thereby enhancing its function on cholesterol excretion. Decreased cellular cholesterol levels further activate SREBP2 and LDLR expression, thereby promoting hepatic uptake of cholesterol. Nogo-B inhibition decreases atherosclerotic plaques and cholesterol levels in mice, and Nogo-B levels are correlated to cholesterol levels in human plasma. In this study, Nogo-B deficiency/inhibition not only promotes hepatic uptake of blood cholesterol but also facilitates cholesterol excretion. This study reports a strategy to lower cholesterol levels by inhibiting Nogo-B expression to promote hepatic cholesterol uptake and cholesterol excretion.

2.
Sci China Life Sci ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39235560

RESUMEN

Targeting the PD-1/PD-L1 axis with small-molecular inhibitors is a promising approach for immunotherapy. Here, we identify a natural pentacyclic triterpenoid, Pygenic Acid A (PA), as a PD-1 signaling inhibitor. PA exerts anti-tumor activity in hPD-1 knock-in C57BL/6 mice and enhances effector functions of T cells to promote immune responses by disrupting the PD-1 signaling transduction. Furthermore, we identify SHP-2 as the direct molecular target of PA for inhibiting the PD-1 signaling transduction. Subsequently, mechanistic studies suggest that PA binds to a new druggable site in the phosphorylated PD-1 ITSM recognition site of SHP-2, inhibiting the recruitment of SHP-2 by PD-1. Taken together, our findings demonstrate that PA has a potential application in cancer immunotherapy and occupying the phosphorylated ITSM recognition site of SHP-2 may serve as an alternative strategy to develop PD-1 signaling inhibitors. In addition, our success in target recognition provides a paradigm of target identification and confirmation for natural products.

4.
Nat Commun ; 15(1): 6845, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39122737

RESUMEN

Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retículo Endoplásmico , Péptido 1 Similar al Glucagón , Proteínas Nogo , Proglucagón , Proproteína Convertasa 1 , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Retículo Endoplásmico/metabolismo , Células Enteroendocrinas/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Insulina/metabolismo , Resistencia a la Insulina , Intestinos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nogo/metabolismo , Proteínas Nogo/genética , Proglucagón/metabolismo , Proglucagón/genética , Proproteína Convertasa 1/metabolismo , Proproteína Convertasa 1/genética , Unión Proteica , Proteolisis
5.
Cell Rep ; 43(9): 114662, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178116

RESUMEN

Ferroptosis is a form of nonapoptotic cell death characterized by iron-dependent peroxidation of polyunsaturated phospholipids. However, much remains unknown about the regulators of ferroptosis. Here, using CRISPR-Cas9-mediated genetic screening, we identify protein arginine methyltransferase 1 (PRMT1) as a crucial promoter of ferroptosis. We find that PRMT1 decreases the expression of solute carrier family 7 member 11 (SLC7A11) to limit the abundance of intracellular glutathione (GSH). Moreover, we show that PRMT1 interacts with ferroptosis suppressor protein 1 (FSP1), a GSH-independent ferroptosis suppressor, to inhibit the membrane localization and enzymatic activity of FSP1 through arginine dimethylation at R316, thus reducing CoQ10H2 content and inducing ferroptosis sensitivity. Importantly, genetic depletion or pharmacological inhibition of PRMT1 in mice prevents ferroptotic events in the liver and improves the overall survival under concanavalin A (ConA) exposure. Hence, our findings suggest that PRMT1 is a key regulator of ferroptosis and a potential target for antiferroptosis therapeutics.

6.
Acta Pharmacol Sin ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060523

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome with cardiac dysfunction, fluid retention and reduced exercise tolerance as the main manifestations. Current treatment of HFpEF is using combined medications of related comorbidities, there is an urgent need for a modest drug to treat HFpEF. Geniposide (GE), an iridoid glycoside extracted from Gardenia Jasminoides, has shown significant efficacy in the treatment of cardiovascular, digestive and central nervous system disorders. In this study we investigated the therapeutic effects of GE on HFpEF experimental models in vivo and in vitro. HFpEF was induced in mice by feeding with HFD and L-NAME (0.5 g/L) in drinking water for 8 weeks, meanwhile the mice were treated with GE (25, 50 mg/kg) every other day. Cardiac echocardiography and exhaustive exercise were performed, blood pressure was measured at the end of treatment, and heart tissue specimens were collected after the mice were euthanized. We showed that GE administration significantly ameliorated cardiac oxidative stress, inflammation, apoptosis, fibrosis and metabolic disturbances in the hearts of HFpEF mice. We demonstrated that GE promoted the transcriptional activation of Nrf2 by targeting MMP2 to affect upstream SIRT1 and downstream GSK3ß, which in turn alleviated the oxidative stress in the hearts of HFpEF mice. In H9c2 cells and HL-1 cells, we showed that treatment with GE (1 µM) significantly alleviated H2O2-induced oxidative stress through the MMP2/SIRT1/GSK3ß pathway. In summary, GE regulates cardiac oxidative stress via MMP2/SIRT1/GSK3ß pathway and reduces cardiac inflammation, apoptosis, fibrosis and metabolic disorders as well as cardiac dysfunction in HFpEF. GE exerts anti-oxidative stress properties by binding to MMP2, inhibiting ROS generation in HFpEF through the SIRT1/Nrf2 signaling pathway. In addition, GE can also affect the inhibition of the downstream MMP2 target GSK3ß, thereby suppressing the inflammatory and apoptotic responses in HFpEF. Taken together, GE alleviates oxidative stress/apoptosis/fibrosis and metabolic disorders as well as HFpEF through the MMP2/SIRT1/GSK3ß signaling pathway.

7.
Cell Biosci ; 14(1): 90, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971765

RESUMEN

Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.

8.
J Med Chem ; 67(13): 10946-10966, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38913497

RESUMEN

Thrombo-inflammation is closely associated with a few severe cardiovascular and infectious diseases. Factor XIIa (FXIIa) in the intrinsic coagulation pathway plays a pivotal role in the development of thrombo-inflammation and its inhibition has emerged as a potential therapeutic approach for thrombo-inflammatory disorders. Nonetheless, as of now, few small-molecule FXIIa inhibitors have demonstrated notable effectiveness against thrombo-inflammation, with none progressing into clinical stages. Herein, we present potent, covalent, reversible, and selective small-molecule FXIIa inhibitors such as 4a and 4j obtained through structure-based drug design. Compounds 4a and 4j showed significant anticoagulation and substantial anti-inflammatory effects in vitro, coupled with exceptional plasma stability. Furthermore, in carrageenan-induced thrombosis models, 4a and 4j demonstrated remarkable dual antithrombotic and anti-inflammatory activity when administered orally. Compound 4j exhibited a favorable safety profile without obvious tissue toxicity in mice, suggesting its potential as an oral therapeutic option for thrombo-inflammation.


Asunto(s)
Factor XIIa , Trombosis , Animales , Trombosis/tratamiento farmacológico , Ratones , Humanos , Factor XIIa/antagonistas & inhibidores , Factor XIIa/metabolismo , Administración Oral , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Relación Estructura-Actividad , Carragenina , Descubrimiento de Drogas , Inflamación/tratamiento farmacológico , Masculino , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Anticoagulantes/química , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Fibrinolíticos/química , Disponibilidad Biológica
9.
Cell Biol Toxicol ; 40(1): 23, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630355

RESUMEN

Cytosolic thiouridylase 2 (CTU2) is an enzyme modifying transfer RNAs post-transcriptionally, which has been implicated in breast cancer and melanoma development. And we found CTU2 participated in hepatocellular carcinoma (HCC) progression here. HepG2 cells as well as xenograft nude mice model were employed to investigate the role of CTU2 in HCC development in vitro and in vivo respectively. Further, we defined CTU2 as a Liver X receptor (LXR) targeted gene, with a typical LXR element in the CTU2 promoter. CTU2 expression was activated by LXR agonist and depressed by LXR knockout. Interestingly, we also found CTU2 took part in lipogenesis by directly enhancing the synthesis of lipogenic proteins, which provided a novel mechanism for LXR regulating lipid synthesis. Meanwhile, lipogenesis was active during cell proliferation, particularly in tumor cells. Reduction of CTU2 expression was related to reduced tumor burden and synergized anti-tumor effect of LXR ligands by inducing tumor cell apoptosis and inhibiting cell proliferation. Taken together, our study identified CTU2 as an LXR target gene. Inhibition of CTU2 expression could enhance the anti-tumor effect of LXR ligand in HCC, identifying CTU2 as a promising target for HCC treatment and providing a novel strategy for the application of LXR agonists in anti-tumor effect.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores X del Hígado , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama , Carcinoma Hepatocelular/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas/genética , Receptores X del Hígado/genética , Ratones Desnudos
10.
Phytomedicine ; 129: 155618, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38678949

RESUMEN

BACKGROUND: Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE: We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN: Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS: In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/ß-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-ß-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS: Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/ß-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.


Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Células Endoteliales de la Vena Umbilical Humana , Salvia miltiorrhiza , Calcificación Vascular , Animales , Calcificación Vascular/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/farmacología , Salvia miltiorrhiza/química , Masculino , Dieta Alta en Grasa/efectos adversos , Aterosclerosis/tratamiento farmacológico , Ratones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Sirtuina 1/metabolismo , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/efectos de los fármacos , Apolipoproteínas E/genética , Farmacología en Red , Vía de Señalización Wnt/efectos de los fármacos , Aorta/efectos de los fármacos , Canfanos , Péptidos y Proteínas de Señalización Intercelular , Panax notoginseng
11.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532128

RESUMEN

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Asunto(s)
Resistencia a la Insulina , Embarazo , Femenino , Ratones , Animales , Resistencia a la Insulina/genética , Fructosa/efectos adversos , Fructosa/metabolismo , Progesterona/metabolismo , Ratones Endogámicos C57BL , Placenta/metabolismo , Hígado/metabolismo , Lípidos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
12.
Cell Rep ; 43(4): 114003, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38527062

RESUMEN

The major histocompatibility complex class I (MHC class I)-mediated tumor antigen processing and presentation (APP) pathway is essential for the recruitment and activation of cytotoxic CD8+ T lymphocytes (CD8+ CTLs). However, this pathway is frequently dysregulated in many cancers, thus leading to a failure of immunotherapy. Here, we report that activation of the tumor-intrinsic Hippo pathway positively correlates with the expression of MHC class I APP genes and the abundance of CD8+ CTLs in mouse tumors and patients. Blocking the Hippo pathway effector Yes-associated protein/transcriptional enhanced associate domain (YAP/TEAD) potently improves antitumor immunity. Mechanistically, the YAP/TEAD complex cooperates with the nucleosome remodeling and deacetylase complex to repress NLRC5 transcription. The upregulation of NLRC5 by YAP/TEAD depletion or pharmacological inhibition increases the expression of MHC class I APP genes and enhances CD8+ CTL-mediated killing of cancer cells. Collectively, our results suggest a crucial tumor-promoting function of YAP depending on NLRC5 to impair the MHC class I APP pathway and provide a rationale for inhibiting YAP activity in immunotherapy for cancer.


Asunto(s)
Presentación de Antígeno , Vía de Señalización Hippo , Antígenos de Histocompatibilidad Clase I , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Linfocitos T Citotóxicos/inmunología , Factores de Transcripción/metabolismo
13.
J Adv Res ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38432393

RESUMEN

INTRODUCTION: Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES: This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS: Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS: By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/ß-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/ß-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION: This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/ß-catenin signalling pathways.

14.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319449

RESUMEN

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Asunto(s)
Antígenos CD36 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Grasos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Antígenos CD36/genética
16.
PeerJ ; 11: e16313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37953784

RESUMEN

Background: Prostate cancer is the most common malignancy in men, and its incidence is increasing year by year. Some studies have shown that risk factors for prostate cancer are related to insulin resistance. The triglyceride-glucose (TyG) index is a marker of insulin resistance. We investigated the validity of TyG index for predicting prostate cancer and the dose-response relationship in prostate cancer in relation to it. Objective: To investigate the risk factors of TyG index and prostate cancer prevalence. Methods: This study was screened from the First Affiliated Hospital of Xinjiang Medical University and included 767 people, including 136 prostate cancer patients in the case group and 631 healthy people in the control group. The relationship between TyG index and the risk of prostate cancer was analyzed by one-way logistic regression, adjusted for relevant factors, and multi-factor logistic regression analysis was performed to further investigate the risk factors affecting the prevalence of prostate cancer. ROC curves and Restricted Cubic Spline were established to determine the predictive value and dose-response relationship of TyG index in prostate cancer. Results: Blood potassium (OR = 0.056, 95% CI [0.021-0.148]), total cholesterol (OR = 1.07, 95% CI [0.792-1.444]) and education level (OR = 0.842, 95% CI [0.418-1.697]) were protective factors for prostate cancer, alkaline phosphatase, age, LDL, increased the risk of prostate cancer (OR = 1.016, 95% CI [1.006-1.026]) (OR = 139.253, 95% CI [18.523-1,046.893] (OR = 0.318, 95% CI [0.169-0.596]); TyG index also was a risk factor for prostate cancer, the risk increased with TyG levels,and persons in the TyGQ3 group (8.373-8.854 mg/dL) was 6.918 times (95% CI [2.275-21.043]) higher than in the Q1 group,in the TyGQ4 group (≥8.854) was 28.867 times of those in the Q1 group (95% CI [9.499-87.727]). Conclusion: TyG index may be a more accurate and efficient predictor of prostate cancer.


Asunto(s)
Resistencia a la Insulina , Neoplasias de la Próstata , Masculino , Humanos , Estudios Retrospectivos , Neoplasias de la Próstata/epidemiología , Fosfatasa Alcalina , Glucosa
17.
Biochem Pharmacol ; 218: 115928, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37979703

RESUMEN

Type 2 diabetes (T2D) is a chronic, burdensome disease that is characterized by disordered insulin sensitivity and disturbed glucose/lipid homeostasis. Berberine (BBR) has multiple therapeutic actions on T2D, including regulation of glucose and lipid metabolism, improvement of insulin sensitivity and energy expenditure. Recently, the function of BBR on fibroblast growth factor 21 (FGF21) has been identified. However, if BBR ameliorates T2D through FGF21, the underlying mechanisms remain unknown. Herein, we used T2D wild type (WT) and FGF21 global knockout (FKO) mice [mouse T2D model: established by high-fat diet (HFD) feeding plus streptozotocin (STZ) injection], and hepatocyte-specific peroxisome proliferator activated receptor γ (PPARγ) deficient (PPARγHepKO) mice, and cultured human liver carcinoma cells line, HepG2 cells, to characterize the role of BBR in glucose/lipid metabolism and insulin sensitivity. We found that BBR activated FGF21 expression by up-regulating PPARγ expression at the cellular level. Meanwhile, BBR ameliorated glucosamine hydrochloride (Glcn)-induced insulin resistance and increased glucose transporter 2 (GLUT2) expression in a PPARγ/FGF21-dependent manner. In T2D mice, BBR up-regulated the expression of PPARγ, FGF21 and GLUT2 in the liver, and GLUT2 in the pancreas. BBR also reversed T2D-induced insulin resistance, liver lipid accumulation, and damage in liver and pancreas. However, FGF21 deficiency diminished these effects of BBR on diabetic mice. Altogether, our study demonstrates that the therapeutic effects of BBR on T2D were partly accomplished by activating PPARγ-FGF21-GLUT2 signaling pathway. The discovery of this new pathway provides a deeper understanding of the mechanism of BBR for T2D treatment.


Asunto(s)
Berberina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Ratones , Humanos , Animales , Resistencia a la Insulina/fisiología , Glucosa/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Berberina/farmacología , Berberina/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hígado/metabolismo , Homeostasis , Lípidos
18.
Int Immunopharmacol ; 125(Pt B): 111198, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37952482

RESUMEN

Vascular calcification is an independent risk factor for cardiovascular disease. However, there is still a lack of adequate treatment. This study aimed to examine the potential of (E)-1-(5-(2-(4-fluorobenzyloxy)Styryl)-4,6-dimethoxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-yl) ethyl ketone (Ptd-1) to alleviate vascular calcification. ApoE-deficient mice were fed a high-fat diet for 12/16 weeks to induce intimal calcification, and wild-type mice were induced with a combination of nicotine and vitamin D3 to induce medial calcification. Human aortic smooth muscle cells (HASMCs) and aortic osteogenic differentiation were induced in vitro with phosphate. In the mouse model of atherosclerosis, Ptd-1 significantly ameliorated the progression of atherosclerosis and intimal calcification, and there were significant reductions in lipid deposition and calcium salt deposition in the aorta and aortic root. In addition, Ptd-1 significantly improved medial calcification in vivo and osteogenic differentiation in vitro. Mechanistically, Ptd-1 reduced the levels of the inflammatory factors IL-1ß, TNFα and IL-6 in vivo and in vitro. Furthermore, we demonstrated that Ptd-1 could attenuate the expression of p-ERK1/2 and ß-catenin, and that the levels of inflammatory factors were elevated in the presence of ERK1/2 and ß-catenin agonists. Interestingly, we determined that activation of the ERK1/2 pathway promoted ß-catenin expression, which further regulated the IL-6/STAT3 signaling pathway. Ptd-1 blocked ERK1/2 signaling, leading to decreased expression of inflammatory factors, which in turn improved vascular calcification. Taken together, our study reveals that Ptd-1 ameliorates vascular calcification by regulating the production of inflammatory factors, providing new ideas for the treatment of vascular calcification.


Asunto(s)
Aterosclerosis , Calcificación Vascular , Humanos , Animales , Ratones , beta Catenina , Interleucina-6 , Osteogénesis , Calcificación Vascular/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico
19.
Int Immunopharmacol ; 125(Pt A): 111168, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37939513

RESUMEN

Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Ratones , Animales , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacología , Neoplasias de la Mama Triple Negativas/patología , Linfocitos T CD8-positivos/metabolismo , FN-kappa B , Colesterol/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transición Epitelial-Mesenquimal , Movimiento Celular , Microambiente Tumoral
20.
J Stroke Cerebrovasc Dis ; 32(12): 107403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37804782

RESUMEN

OBJECTIVES: Protein Z (PZ) /Protein Z-dependent protease inhibitor (ZPI) (PZ/ZPI) system is a new anticoagulant system discovered in recent years, which plays an important role in many diseases. We aimed to compare the plasma PZ/ZPI levels of acute ischemic stroke (AIS) patients and non-stroke control participants and the role of PZ/ZPI in the development of stroke was preliminarily analyzed. MATERIALS AND METHODS: Enzyme linked immunosorbent assay (ELISA) was used to detect and compare plasma PZ levels of 86 patients with acute AIS and 85 non-stroke control patients. Multivariable Logistic regression was used to analyze whether PZ was an independent risk factor for AIS. RESULTS: In the present study, plasma PZ is closely related to inflammatory response, coagulation process and platelet activation, and may participate in the development of AIS by inducing inflammatory responses and interfering with the coagulation process. CONCLUSIONS: Our results suggested that plasma PZ level is one of the independent risk factors of AIS, and plasma ZPI was closely related to coagulation and platelet parameter and may play a role in the coagulation process during AIS.


Asunto(s)
Accidente Cerebrovascular Isquémico , Serpinas , Humanos , Inhibidores de Proteasas/metabolismo , Serpinas/metabolismo , Serpinas/farmacología , Accidente Cerebrovascular Isquémico/diagnóstico , Estudios Prospectivos , Proteínas Sanguíneas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA