Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(2): e24758, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312599

RESUMEN

Background: Eexploring the limits of CT cranial perfusion scan acquisition intervals and predicting time to peak. Methods: A retrospective analysis was conducted on 45 patients with suspected stroke who underwent brain CTP scans. Different sampling intervals were set based on the TDC. The patients were divided into four groups: Group 1 underwent continuous scanning with a uniform interval of 1.5 s; Group 2 had a uniform interval of 3 s; Group 3 had a 1.5-s interval between arterial and venous peak vertices with 1 point retained before and after the peak for 1.5 s and with a remaining acquisition interval of 4.5 s; and Group 4 had a uniform interval of 4.5 s. Statistical analysis was performed on the perfusion parameters of each group. Additionally, in 286 patients who underwent head and neck CTA examinations, the peak time of contrast medium was recorded, and the peak time was predicted based on factors such as age, height, weight, heart rate, systolic blood pressure, diastolic blood pressure, triglycerides, and total cholesterol. The results compared with Group 1 and Group 2, as well as Group 1 and Group 3, the P values of CBF, CBV, MTT, and Tmax in the left and right cerebral hemispheres of healthy subjects and in the infarct and noninfarct areas of patients were all >0.05. A comparison between Group 1 and Group 4 showed that right cerebral hemisphere CBF and CBV, left cerebral hemisphere CBF, CBV, and Tmax, infarct area CBV and Tmax, and noninfarct area CBF, CBV, and MTT had P values > 0.05, while other groups all had P values < 0.05. Bland‒Altman analysis showed that the perfusion parameters in Group 1 were consistent with those in Group 2, and those in Group 1 were consistent with those in Group 3. The radiation doses in the second and third groups were lower, and the dose in the third group was lower than that in the second group. Conclusion: Continuous acquisition between the peak points of the arterial and venous phases, with 1 point reserved before and after the peak and a 4.5-s interval for the rest, represents the maximum time interval for CTP scanning and can effectively reduce the radiation dose. The formula Tmax (s) = 0.290 × height (cm) - 0.226 × heart rate (times/min) + 0.216 × age (years) - 1.901 × triglycerides (mmol/L) - 0.061 × systolic blood pressure (mmHg) - 7.216 (R2 = 0.449, F = 17.905, P < 0.01) was established for predicting time to peak enhancement.

2.
Brain Res Bull ; 208: 110888, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295883

RESUMEN

Neuroinflammation induced by chronic cerebral hypoperfusion (CCH) plays a crucial role in the pathophysiologic mechanisms of vascular dementia (VD). A growing body of research has found that intestinal microbiota is associated with a variety of central nervous system disorders and that there is a relationship between intestinal microbiota dysbiosis and cognitive dysfunction and inflammatory responses. Baicalein belongs to the class of flavonoids and has a variety of biological functions, including anti-inflammatory, antioxidant and anti-apoptotic. Baicalein has a significant improvement in memory and learning, and can be used as a potential drug for the protection and treatment of central nervous system disorders. Whether baicalein has an ameliorative effect on cognitive impairment in VD, and whether its mechanism is related to the inhibition of inflammatory response and regulation of intestinal microbiota has not been reported. We used bilateral common carotid artery occlusion (BCCAO) to establish a VD rat model. Morris water maze (MWM) test showed that baicalein improved cognitive dysfunction in VD rats. We applied HE staining, immunofluorescence and ELISA to observe that baicalein treatment significantly improved CCH-induced neuronal damage in the CA1 region of the hippocampus, and reduced glial cell activation and release of pro-inflammatory factors. Western blot showed that baicalein inhibited the activation of the TLR4/MyD88/NF-κB signaling pathway in VD rats. We applied 16 S rDNA sequencing to analyze the composition of the intestinal microbiota. The results showed that baicalein modulated the diversity and composition of the intestinal microbiota, and suppressed the relative abundance of inflammation-associated microbiota in VD rats. In conclusion, this study found that baicalein ameliorated cognitive impairment, attenuated hippocampal inflammatory responses, inhibited the TLR4/MyD88/NF-κB signaling pathway, and modulated intestinal microbiota in VD rats.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Demencia Vascular , Flavanonas , Microbioma Gastrointestinal , Ratas , Animales , Demencia Vascular/tratamiento farmacológico , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo , Factor 88 de Diferenciación Mieloide , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Isquemia Encefálica/metabolismo
3.
PLoS One ; 18(10): e0292363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37788284

RESUMEN

When discussing the influence of the built environment on taxi travel demand, few studies have considered the effect of the modifiable areal unit problem (MAUP) or the influence of the "5D" dimensions of the built environment (It refers to the consideration of the built environment from five dimensions of density, diversity, design, destination accessibility and distance to transit.) on taxi travel demand. Moreover, discussion of the nonlinear and linear relationships between taxi demand and environment variables is also lacking. To address these gaps, we constructed a "5D" dimension index system of built environment variables. The influence of the MAUP on the model results was discussed using the optimal parameter-based geographical detector (OPGD) model, and the optimal spatial analysis unit was selected. The OPGD and multiscale geographically weighted regression (MGWR) models were used to reveal the influence of different dimensions of the built environment on taxi travel demand from global and local perspectives, respectively. Finally, the central urban area of Xi'an was analyzed as an example. The results show the following: (1) Most built environment variables are sensitive to the influence of MAUP. (2) It is better to divide the space into regular hexagons than squares, and the optimal spatial analysis unit in this study is a regular hexagon grid with sides of 900m. (3) From a global perspective, the distance to the city center, commercial residence POI density, transportation facility POI density, and population density have the greatest influence on the demand for taxi travel. (4) From a local perspective, the MGWR model considering spatial heterogeneity and scale differences is superior to the GWR model, and the influence of built environment variables exhibited spatial heterogeneity. The proposed optimal spatial analysis unit can provide a basis for taxi demand forecasting and scheduling. This study provides a reference for urban planners and traffic managers to offer optimization strategies related to the built environment, promote healthy development of the taxi industry, and solve the problems of the urban transportation system.


Asunto(s)
Transportes , Viaje , Entorno Construido , Análisis Espacial , Ciudades
4.
Int J Biol Macromol ; 253(Pt 3): 126903, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37714239

RESUMEN

In recent years, the pursuit of high-performance nano-flexible electronic composites has led researchers to focus on nanocellulose-graphene composites. Nanocellulose has garnered widespread interest due to its exceptional properties and unique structure, such as renewability, biodegradability, and biocompatibility. However, nanocellulose materials are deficient in electrical conductivity, which limits their applications in flexible electronics. On the other hand, graphene boasts remarkable properties, including a high specific surface area, robust mechanical strength, and high electrical conductivity, making it a promising carbon-based nanomaterial. Consequently, research efforts have intensified in exploring the preparation of graphene-nanocellulose flexible electronic composites. Although there have been studies on the application of nanocellulose and graphene, there is still a lack of comprehensive information on the application of nanocellulose/graphene in flexible electronic composites. This review examines the recent developments in nanocellulose/graphene flexible electronic composites and their applications. In this review, the preparation of nanocellulose/graphene flexible electronic composites from three aspects: composite films, aerogels, and hydrogels are first introduced. Next, the recent applications of nanocellulose/graphene flexible electronic composites were summarized including sensors, supercapacitors, and electromagnetic shielding. Finally, the challenges and future directions in this emerging field was discussed.


Asunto(s)
Grafito , Carbono , Conductividad Eléctrica , Electrónica , Hidrogeles
5.
Front Cell Dev Biol ; 11: 1146195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187618

RESUMEN

Introduction: Ablation therapy is a commonly used tool in the management of hepatocellular carcinoma (HCC). After ablation, dying cancer cells release a variety of substances that trigger subsequent immune responses. Immunogenic cell death (ICD) has been a trending topic in recent years and has been discussed many times along with oncologic chemotherapy. However, the subject of ablative therapy and ICDs has been little discussed. The purpose of this study was to investigate whether ablation treatment induces ICD in HCC cells and whether different types of ICDs arise because of different ablation temperatures. Methods: Four different HCC cell lines (H22, Hepa-16, HepG2 and SMMC7221) were cultured and treated under different temperatures (-80°C, -40°C, 0°C, 37°C, and 60°C). Cell Counting Kit-8 assay was performed to analyze the viability of different cell lines. Apoptosis was detected by flow cytometry assay, and a few ICD-related cytokines (calreticulin, ATP, high mobility group box 1, and CXCL10) were detected by immunofluorescence or enzyme-linked immunosorbent assay. Results: The apoptosis rate of all kinds of cells increased significantly in -80°C group (p < 0.01) and 60°C group (p < 0.01). The expression levels of ICD-related cytokines were mostly significantly different between the different groups. For calreticulin, Hepa1-6 cells and SMMC7221 cells showed significantly higher protein expression levels in 60°C group (p < 0.01) and significantly lower protein expression levels -80°C group (p < 0.01). The ATP, high mobility group box 1 and CXCL10 expression levels were significantly higher in 60°C, -80°C and -40°C group of all four cell lines (p < 0.01). Conclusion: Different ablative treatments could induce different types of ICDs in HCC cells, providing a promising track for the development of individualized cancer therapies.

6.
RSC Adv ; 12(51): 33429-33439, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36425204

RESUMEN

Five Mn-loaded catalysts were synthesized on γ-Al2O3, TiO2, ZrO2, nano γ-Al2O3 and nanoZrO2 supports. The catalytic ozonation of DCM (dichloromethane) was evaluated under industrial conditions (i.e., temperature, O3 input, H2O and SO2 content). According to results, >90% DCM conversion without O3 residue was achieved for all samples at 120 °C and an O3/DCM ratio of 6. At 20-120 °C, the highest Mn3+ content, abundant surface oxygen species and more weak acid sites led to the best performance of Mn/nanoAl2O3 (M/A-II). At 20 °C and 120 °C, 80% and 95% DCM can be degraded respectively on M/A-II at 20 °C with matched surface oxygen species and acidity. An O3/DCM ratio of 6 was optimal for performance and economy. For the effects of complex exhaust, both H2O and SO2 deactivated M/A-II. The H2O-induced deactivation was recoverable and also removed surface-deposited chlorine-containing species, enhancing the HCl selectivity. Finally, the Cl equilibrium of the reaction was comprehensively analyzed.

7.
PLoS One ; 17(6): e0269656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35675282

RESUMEN

Although a wide range of literature has investigated the network-level highway maintenance plans and policies, few of them focused on the maintenance scheduling problem. This study proposes a methodology framework to model and compare two different maintenance scheduling strategies for highway networks, i.e., minimal makespan strategy (MMS) and minimal increased travel delay strategy (MITDS). We formulate MMS as a mixed integer linear programming model subject to the constraints of the quantity of manpower and the worst-first maintenance sequence. A bi-level programming model is proposed to quantify and optimize MITDS. The upper level model determines the optimal scheduling to minimize the increased traffic delays during the maintenance makespan. In the lower level, a modified day-to-day traffic assignment model is put forward to reflect the traffic evolution dynamics by simulating travelers' route choice behaviors. A simulated annealing algorithm and augmented Lagrange algorithm are employed to solve the two proposed models, respectively. Finally, a numerical example using a highway network is developed. The two proposed strategies are tested considering different traffic demands, numbers of engineering teams, and travelers' sensitivities to traffic congestion. The experiment results reveal that compared with MMS, MITDS extends makespan by 2 days though, it reduces the total increased travel delays by 4% and both MMS and MITDS can obtain the minimum total increased travel delays when the number of engineering teams is 6. The sensitivity analysis indicates that both the two strategies have the maximum and minimum total increased travel delays when the weight of prediction in travelers' perception is 0.3 and 0.7, respectively. The proposed framework has the potential to provide reference in implementing highway maintenance activities reasonably.


Asunto(s)
Algoritmos , Viaje , Conducta de Elección
8.
Nanotechnology ; 33(14)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34823231

RESUMEN

The poor electronic conductivity and low intrinsic electrocatalytic activity of metal organic frameworks (MOFs) greatly limit their direct application in electrocatalytic reactions. Herein, we report a conductive two-dimensionalπ-dconjugated Ni and Co bimetal organic framework (MOF)-NiCo-(2,3,6,7,10,11-hexaiminotriphenylene) (NiCo-HITP) nanorods decorated with highly dispersed Co3O4nanoparticles (NPs) as a promising bi-functional electrocatalyst towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) through an effective and facile strategy by modifying the rod-shaped -Ni3HITP2crystals using cobalt ions. The triggered electrocatalytic activity of the resulting MOF-based materials was achieved by increasing the electrical conductivity (7.23 S cm-1) originated from Ni3HITP2substrate and also by creating the cooperative catalysis sites of Co-Nxand Co3O4NPs. Optimized syntheses show a promising ORR activity with a high half-wave potential (0.77 V) and also a significantly improved OER activity compared with pure Ni3HITP2in alkaline electrolyte. Furthermore, a rechargeable Zn-air battery using the as-prepared material as air-cathode also shows a high power density (143.1 mW cm-2)-even comparable to a commercial Pt/C-RuO2-based battery. This methodology offers a new prospect in the design and synthesis of non-carbonized MOF bi-functional electrocatalysts for efficient catalysis towards ORR and OER.

9.
PLoS One ; 16(3): e0247431, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661952

RESUMEN

As an important service industry in cities, taxis provide people with an all-weather travel mode. And its demand is greatly affected by the internal functions of the city. It is very important to understand the relationship between the mixed degree of urban internal functions and the residents' taxi travel demand to alleviate traffic congestion and formulate corresponding urban traffic strategies. This paper combined two heterogeneous data in the main urban area of Xi'an, urban points of interest (POIs) and taxi GPS. Firstly, a spatial information entropy model was constructed to quantitatively evaluate the mixed degree of functions in different spaces within the city. Secondly, the kernel density estimation method was used to analyze the spatial distribution evolution characteristics of residents' taxi travel demand. A geographically weighted regression (GWR) model was further used to study the spatial and temporal influences of the mixed degree of urban internal functions on taxi travel demand. Results indicate that there is an obvious spatiotemporal pattern in the impact of the mixed degree of urban functions on taxi travel demand. And the GWR model is used to study the impact is superior to the ordinary least squares (OLS). In more developed areas, improving the mixed degree of urban functions will be more attractive than backward areas. It is also found that although the single function of the city has an impact on the taxi travel demand, the result of the single function is not ideal. This study can provide a reference for the optimal combination of basic units of urban space in urban planning, promote the balance of supply and demand of urban taxis, rationalize urban taxis' operation and allocation, and solve the problems of urban transportation systems.


Asunto(s)
Automóviles , Modelos Teóricos , Viaje , Ciudades , Humanos
10.
Carbohydr Polym ; 239: 116233, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32414449

RESUMEN

A highly efficient and sustainable strategy for the production of functional and thermostable cellulose nanocrystals (CNCs) was developed in this work. In which, the acid hydrolysis system composed with small doses of H2SO4 (5-10%) and large amounts of easily recoverable acetic acid (70-90%) was used to hydrolyze cellulose pulp at 80 °C for several hours. The rod-like CNCs were obtained with the length of 150-500 nm and diameter of 5-20 nm in high yield (Ymax = 81%). The resulted CNCs showed high thermal stability and excellent dispersion stability in both aqueous and organic phases. The acetic acid in the hydrolysis system can be completely recovered by vacuum distillation, and the dosage of sulfuric acid can be reduced significantly compared with the traditional sulfuric acid hydrolysis. Thus, this approach is promising for the large-scale and sustainable preparation of CNCs with excellent water dispersibility and good thermal stability, with less environmental issues.

11.
RSC Adv ; 10(69): 42054-42061, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516770

RESUMEN

High dispersibility and rapid electron transfer are required for a highly efficient catalyst. In this work, such materials have been designed using a scalable hydrothermal method from graphene oxide and a metal-organic framework. A cross-linked three-dimensional graphene (3DGraphene) material loaded with mono-dispersed nitrogen-doped carbon-coated metallic Co (NC@Co) nanoparticles with uniform size of 12.2 nm (3DGraphene/NC@Co) has been obtained and exhibits excellent activity for catalytic reduction of 4-nitrophenol to 4-aminophenol. Such high catalytic activity can be assigned to the highly energetic hot/free electrons arising from 3DGraphene under light illumination and the synergistic effect between 3DGraphene and NC@Co nanoparticles. The catalytic reaction can be finished in 240 s with NaBH4 as the reducing agent, and the corresponding rate constant (k) is 1.5 × 10-2 s-1, comparable to that of reported noble metal catalysts. Furthermore, the magnetic 3DGraphene/NC@Co materials are beneficial for the separation from the mixture after reaction and exhibit excellent cycling stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...