Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 905: 167840, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37844636

RESUMEN

Unstable agricultural systems, such as unreliable fruit production, threaten global food security and could negatively impact human nutrition. However, methods of maintaining a stable fruit supply have received little attention. Therefore, this study explored the impact of a systematic service model on the establishment of an integrated soil-fruit-climate management (ISM) approach and stabilization of apple yield based on a fixed-effects model using sample data from Fuji apple farmers in China for six consecutive years (2016-2021). The results showed that the systematic service model dramatically improved the adoption of ISM-based technology. By 2021, the rate of ISM technology adoption among farmers reached 84.4 %, especially pendulous branch-fruiting technology and Osmia pollination, which increased by 82.2 % and 37.8 %, respectively, compared to that in 2016. With the adoption of the ISM approach, apple yields and tree loadings stabilized over time. For example, the yield change rate and tree loading change rate were 14.8 % and 7.3 % lower, respectively, in 2021 than in 2016. We demonstrated through a fixed-effects analysis that the ISM approach exerts a fully mediated effect on the mechanism of action of service measure quantity disclosure, which positively impacted the rate of change in yield and tree loadings. This finding indicated that the six-in-one systematic service model of soil testing, pest and disease diagnosis, course training, meteorological monitoring, on-site guidance, and experimental demonstration established by the Science and Technology Backyard model resolved the information, goal, and hardware gaps that limited the adoption of this technology by farmers and promoted the construction of an integrated soil-fruit-climate management approach, which in turn has stabilized the apple production system.


Asunto(s)
Malus , Humanos , Animales , Frutas , Suelo , Agricultura/métodos , Clima
2.
Heliyon ; 9(2): e13521, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36852064

RESUMEN

The use of plastic film to promote early cultivation is common by small farmers in Northern China for out of season facility fresh grape production, but the lack of effective technical indicators, sensors and temperature control techniques for facility temperature management has resulted in high cost and low yields. To explore effective ways of enhancing grape yield and quality through temperature monitoring and precise temperature control by sensors under the current plastic covering systems of small farmers. By providing a resident service in the Science and Technology Backyard (STB) and using intelligent sensors to monitor and manage the temperature in small farmers' facilities in real-time (on an hourly basis). We found that the phenological and effective accumulated temperature in plastic film-covered facilities was significantly different from those in open field cultivation, with a 15.9% advance in the phenological process and 19.5% reduction in effective accumulated temperature requirements, as well as a 51.4% increase in effective accumulated temperature requirements during the vegetative stage. In the case of the delay in temperature regulation of the plastic film cover system, it is necessary to control the minimum temperature and high temperature to match the effective accumulated temperature demand. By installing the Pycno temperature sensor, using units of minutes, accurately monitoring the temperature changes inside and outside the facility, and deploying smoke to prevent low temperature and open the air outlet to control the high temperature at the right time, plastic film can reduce the proportion of effective accumulated temperature distribution during the vegetative stage by 3.2% and reduce the vigorous growth of new shoots by 22.2%. The result had shown 40.2% increase in spike weight and 30.1% increase in yield. By combining real-time sensor monitoring with grape growth and development indicators, we have quantified the difference in effective temperature requirements between the vegetative and reproductive growth periods of grapes in current smallholder plastic cover systems and open field cultivation systems. By combining sensor monitoring and technical services in a precise manner, the production of grapes in facilities under smallholder plastic cover systems can also achieve smart agriculture and gain yield and quality improvements.

3.
Nutrients ; 14(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014922

RESUMEN

Trimethylamine-N-oxide (TMAO), a diet-derived cometabolite linked to cardiometabolic disease, has been associated with elevated dietary status, particularly in people with kidney failure and adults with dietary modulations. However, the influence of the current diet on TMAO levels in free-living children has not been adequately described. This study was to explore associations of food compositions and dietary diversity with urinary TMAO and its precursor concentrations. Urinary TMAO and its precursor concentrations of 474 healthy children from the Sheyang Mini Birth Cohort were quantified by ultra-performance liquid chromatography−Q Exactive high-resolution mass spectrometer (UPLC-Q Exactive HRMS). Individual food compositions from 24 h dietary recall data were classified into 20 groups and diversity scores were calculated according to the guidelines of the Food and Agriculture Organization of the United Nations (FAO). Associations of urinary TMAO and its precursors with food compositions and dietary diversity scores were assessed by generalized linear regression models. In models adjusted for potential confounders, urinary TMAO was significantly associated with intakes of fish (ß, regression coefficient = 0.155, p < 0.05) and vegetables (ß = 0.120, p < 0.05). Eggs intake showed positive associations with TMAO's precursors (trimethylamine: ß = 0.179, p < 0.05; choline: ß = 0.181, p < 0.05). No association between meat intake and TMAO was observed, whereas meat and poultry intakes were related to the levels of acetyl-L-carnitine and L-carnitine (ß: 0.134 to 0.293, p < 0.05). The indicators of dietary diversity were positively correlated to TMAO concentration (ß: 0.027 to 0.091, p < 0.05). In this free-living children-based study, dietary factors were related to urinary TMAO and its precursors, especially fish, meat, and eggs. As such, dietary diversity was positively related to the level of TMAO.


Asunto(s)
Dieta , Metilaminas , Animales , Colina , Humanos , Carne , Óxidos
4.
Sci Rep ; 12(1): 10279, 2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35717410

RESUMEN

Excessive NPK inputs but low grain yield and high environmental impact are common issues in maize production in North China Plain (NCP). The objective of our study was to test whether a combined strategy of optimizing plant density, balancing NPK input, and innovating one-time fertilizer products could achieve a more sustainable maize production in NCP. Thus, a field experiment was conducted at Luanna County NCP with the treatments of unfertilized control (CK), farmer practice (FP, conventional plant density and NPK input), conventional one-time urea-based coated fertilizer (CF, optimized plant density and NPK input), and five newly designed innovative one-time NPK fertilizers of ammonium sulphate and urea synergy (IF, optimized plant density and NPK input), innovative fertilizer with various additives of urea inhibitors (IF + UI), double inhibitors (IF + DI), micro-organisms (IF + MI), and trace elements (IF + TE). The grain yield, N sustainability indicators (N use efficiency NUE, partial factor productivity of N PFPN, and N surplus), and cost-benefits analysis were examined over the maize growing season of 2020. Results had shown that on average the five innovative fertilizers (IF, IF + UI, IF + DI, IF + MI, and IF + TE) and CF that had optimized plant density and NPK input achieved 13.5%, 98.6%, 105.9%, 37.4% higher yield, PFPN, NUE, net-benefits as well as 207.1% lower N surplus compared with FP respectively. Notably, the innovative fertilizer with various effective additives (IF + UI, IF + DI, IF + MI, and IF + TE) which can be commonly found in the fertilizer market hadn't resulted in a significant improvement in yield and NUE rather a greater cost and lower net benefits in comparison to IF. In summary, our study highlighted the effectiveness of the combined strategy of optimized plant density, balancing NPK input, and innovative NPK fertiliser on sustainable maize production in NCP, however, the innovative fertilisers with effective additives should be properly selected for better economic benefits.


Asunto(s)
Fertilizantes , Zea mays , Agricultura/métodos , China , Grano Comestible/química , Fertilizantes/análisis , Nitrógeno/análisis , Suelo , Urea/farmacología
5.
PeerJ ; 9: e11053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868806

RESUMEN

The objective of this experiment was to study the effect of cotton residues incorporation on soil properties, soil organic nitrogen (N) fractions, and N-mineralizing enzyme (protease, and urease) activity in the 0-40 cm soil layer in the long-term continuous cotton field. In this experiment, seven treatments, including cotton residues incorporation for 5, 10, 15 and 20 years (marked as 5a, 10a, 15a, and 20a) and continuous cropping for 5, 10 and 20 years (marked as CK5, CK10 and CK20) were conducted. The results showed that the soil organic carbon (C) and N increased gradually with the increase in the duration of continuous cropping with cotton residues incorporation. Compared with CK20, the 20a treatments reduced the content of amino acid N (AAN), ammonium N (AN), amino sugar N (ASN), hydrolysable unidentified N (HUN), and acid insoluble N (AIN) significantly by 48.6, 32.2, 96.9, 48.3, and 38.7%, respectively (p < 0.05). The activity of protease and urease in 20a treatments significantly increased by 53.4 and 53.1% respectively as compared to CK20 (p < 0.05). Soil organic C and N-mineralizing enzyme activity decreased with the increase in cropping duration in the absence of cotton residues incorporation, while the organic N increased slightly. In conclusion, cotton residues returning can increase the storage of soil organic C and N in long-term continuous cropping cotton field, and improve the soil quality and soil fertility of continuous cropping cotton field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...