Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Kidney Int ; 101(1): 119-130, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757120

RESUMEN

Kidney fibrosis is associated with the progression of acute kidney injury to chronic kidney disease. MG53, a cell membrane repair protein, has been shown to protect against injury to kidney epithelial cells and acute kidney injury. Here, we evaluated the role of MG53 in modulation of kidney fibrosis in aging mice and in mice with unilateral ureteral obstruction (UUO) a known model of progressive kidney fibrosis. Mice with ablation of MG53 developed more interstitial fibrosis with age than MG53-intact mice of the same age. Similarly, in the absence of MG53, kidney fibrosis was exaggerated compared to mice with intact MG53 in the obstructed kidney compared to the contralateral unobstructed kidney or the kidneys of sham operated mice. The ureteral obstructed kidneys from MG53 deficient mice also showed significantly more inflammation than ureteral obstructed kidneys from MG53 intact mice. In vitro experiments demonstrated that MG53 could enter the nuclei of proximal tubular epithelial cells and directly interact with the p65 component of transcription factor NF-κB, providing a possible explanation of enhanced inflammation in the absence of MG53. To test this, enhanced MG53 expression through engineered cells or direct recombinant protein delivery was given to mice subject to UUO. This reduced NF-κB activation and inflammation and attenuated kidney fibrosis. Thus, MG53 may have a therapeutic role in treating chronic kidney inflammation and thereby provide protection against fibrosis that leads to the chronic kidney disease phenotype.


Asunto(s)
Lesión Renal Aguda , Obstrucción Ureteral , Lesión Renal Aguda/genética , Lesión Renal Aguda/prevención & control , Animales , Membrana Celular/metabolismo , Fibrosis , Riñón/patología , Proteínas de la Membrana/metabolismo , Ratones , FN-kappa B/metabolismo , Obstrucción Ureteral/metabolismo
2.
Methods Mol Biol ; 2193: 111-120, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32808263

RESUMEN

The immune system depends on two major paths-the innate and the adaptive immunity. Macrophage, with its unique features as the first line of immune defense to engulf and digest invaders, serves as the key effector cells integrating those two paths. The dynamic plasticity of macrophage activation during wound repair, inflammation resolution, and tissue remodeling are emerging biomedical and bioengineering hot topics in immune function studies such as the various secretions of cytokines and chemokines and the signaling pathways with ligands and their cognate receptors. Better knowledge on how physical/mechanical and multicellular microenvironment on the modulation of macrophage functions will create innovative therapies to boost host defense mechanism and assist wound healing. In this, we describe an easy method to measure functions (gene expressions) of human and mouse macrophages in response to mechanical microenvironment changes by embedding isolated macrophages in polymerized hyaluronan gel with different wound matrix stiffness.


Asunto(s)
Inflamación/terapia , Activación de Macrófagos/genética , Biología Molecular/métodos , Cicatrización de Heridas/genética , Inmunidad Adaptativa/genética , Animales , Citocinas/genética , Humanos , Ácido Hialurónico/farmacología , Inflamación/genética , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Transducción de Señal/genética , Cicatrización de Heridas/fisiología
3.
Front Physiol ; 11: 1050, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013450

RESUMEN

To excrete body nitrogen waste and regulate electrolyte and fluid balance, the kidney has developed into an energy factory with only second to the heart in mitochondrial content in the body to meet the high-energy demand and regulate homeostasis. Energy supply from the renal mitochondria majorly depends on lipid metabolism, with programed enzyme systems in fatty acid ß-oxidation and Krebs cycle. Renal mitochondria integrate several metabolic pathways, including AMPK/PGC-1α, PPARs, and CD36 signaling to maintain energy homeostasis for dynamic and static requirements. The pathobiology of several kidney disorders, including diabetic nephropathy, acute and chronic kidney injuries, has been primarily linked to impaired mitochondrial bioenergetics. Such homeostatic disruption in turn stimulates a pathological adaptation, with mitochondrial enzyme system reprograming possibly leading to dyslipidemia. However, this alteration, while rescuing oncotic pressure deficit secondary to albuminuria and dissipating edematous disorder, also imposes an ominous lipotoxic consequence. Reprograming of lipid metabolism in kidney injury is essential to preserve the integrity of kidney mitochondria, thereby preventing massive collateral damage including excessive autophagy and chronic inflammation. Here, we review dyslipidemia in kidney disorders and the most recent advances on targeting mitochondrial energy metabolism as a therapeutic strategy to restrict renal lipotoxicity, achieve salutary anti-edematous effects, and restore mitochondrial homeostasis.

4.
Data Brief ; 22: 279-285, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30591946

RESUMEN

The data presented pertain to a research article titled "Heme Oxygenase 1 Up-Regulates Glomerular Decay Accelerating Factor Expression and Minimizes Complement Deposition and Injury" (Detsika et al., 2016). The present work provides additional data on induction and immunolocalization of heme oxygenase (HO)-1 (an antioxidant enzyme) and decay-accelerating factor (DAF) (a complement activation inhibitor) in isolated rat glomeruli and in glomerular epithelial cells (podocytes) in response to Iron Protoporphyrin IX (FePP, heme), and to non-iron protoporphyrins (PPs) with varying metal functionalities (ZnPP, SnPP), including a metal-devoid PP. Induction and immuno-localization of HO-1 and DAF in response to these metalloporphyrins (MP) were assessed using western blot analyses and confocal microscopy in isolated glomeruli and in cultured podocytes. These analyses identified podocytes as a major localization site of HO-1 and DAF induction in response to the aforementioned MPs. Effects of these MPs on a key glomerular structural protein, Nephrin, are also reported. The data identify MPs most and least capable of inducing DAF and reducing Nephrin expression and provide clues into expected outcomes of animal studies assessing MP efficacy in upregulating the cytoprotective proteins HO-1 and DAF.

5.
Biomacromolecules ; 18(9): 2820-2829, 2017 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-28731675

RESUMEN

Following myocardial infarction (MI), degradation of extracellular matrix (ECM) by upregulated matrix metalloproteinases (MMPs) especially MMP-2 decreases tissue mechanical properties, leading to cardiac function deterioration. Attenuation of cardiac ECM degradation at the early stage of MI has the potential to preserve tissue mechanical properties, resulting in cardiac function increase. Yet the strategy for efficiently preventing cardiac ECM degradation remains to be established. Current preclinical approaches have shown limited efficacy because of low drug dosage allocated to the heart tissue, dose-limiting side effects, and cardiac fibrosis. To address these limitations, we have developed a MMP-2 inhibitor delivery system that can be specifically delivered into infarcted hearts at early stage of MI to efficiently prevent MMP-2-mediated ECM degradation. The system was based on an injectable, degradable, fast gelation, and thermosensitive hydrogel, and a MMP-2 specific inhibitor, peptide CTTHWGFTLC (CTT). The use of fast gelation hydrogel allowed to completely retain CTT in the heart tissue. The system was able to release low molecular weight CTT over 4 weeks possibly due to the strong hydrogen bonding between the hydrogel and CTT. The release kinetics was modulated by amount of CTT loaded into the hydrogel, and using chondroitin sulfate and heparin that can interact with CTT and the hydrogel. Both glycosaminoglycans augmented CTT release, while heparin more greatly accelerated the release. After it was injected into the infarcted hearts for 4 weeks, the released CTT efficiently prevented cardiac ECM degradation as it not only increased tissue thickness but also preserved collagen composition similar to that in the normal heart tissue. In addition, the delivery system significantly improved cardiac function. Importantly, the delivery system did not induce cardiac fibrosis. These results demonstrate that the developed MMP-2 inhibitor delivery system has potential to efficiently reduce adverse myocardial remodeling and improve cardiac function.


Asunto(s)
Portadores de Fármacos/síntesis química , Liberación de Fármacos , Hidrogeles/síntesis química , Inhibidores de la Metaloproteinasa de la Matriz/farmacocinética , Infarto del Miocardio/tratamiento farmacológico , Péptidos Cíclicos/farmacocinética , Animales , Sulfatos de Condroitina/química , Portadores de Fármacos/efectos adversos , Portadores de Fármacos/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Heparina/química , Humanos , Hidrogeles/efectos adversos , Hidrogeles/química , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/administración & dosificación , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/uso terapéutico , Ratas , Ratas Sprague-Dawley
6.
Adv Exp Med Biol ; 982: 529-551, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28551805

RESUMEN

The kidney is a vital organ that demands an extraordinary amount of energy to actively maintain the body's metabolism, plasma hemodynamics, electrolytes and water homeostasis, nutrients reabsorption, and hormone secretion. Kidney is only second to the heart in mitochondrial count and oxygen consumption. As such, the health and status of the energy power house, the mitochondria, is pivotal to the health and proper function of the kidney. Mitochondria are heterogeneous and highly dynamic organelles and their functions are subject to complex regulations through modulation of its biogenesis, bioenergetics, dynamics and clearance within cell. Kidney diseases, either acute kidney injury (AKI) or chronic kidney disease (CKD), are important clinical issues and global public health concerns with high mortality rate and socioeconomic burden due to lack of effective therapeutic strategies to cure or retard the progression of the diseases. Mitochondria-targeted therapeutics has become a major focus for modern research with the belief that maintaining mitochondria homeostasis can prevent kidney pathogenesis and disease progression. A better understanding of the cellular and molecular events that govern mitochondria functions in health and disease will potentially lead to improved therapeutics development.


Asunto(s)
Metabolismo Energético , Enfermedades Renales/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Metabolismo Energético/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/genética , Enfermedades Renales/fisiopatología , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Dinámicas Mitocondriales , Mitofagia , Transducción de Señal
7.
Am J Pathol ; 186(11): 2833-2845, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27662796

RESUMEN

Complement-activation controllers, including decay accelerating factor (DAF), are gaining emphasis as they minimize injury in various dysregulated complement-activation disorders, including glomerulopathies. Heme oxygenase (HO)-1 overexpression or induction has been shown to attenuate injury in complement-dependent models of glomerulonephritis. This study investigated whether up-regulation of DAF by heme oxygenase 1 (HO-1) is an underlying mechanism by using Hmox-1-deficient rats (Hmox1+/-; Hmox1-/-) or rats with HO-1 overexpression targeted to glomerular epithelial cells (GECHO-1), which are particularly vulnerable to complement-mediated injury owing to their terminally differentiated nature. Constitutively expressed DAF was decreased in glomeruli of Hmox1-/- rats and augmented in glomeruli of GECHO-1 rats. In GECHO-1 rats with anti-glomerular basement membrane antibody mediated, complement-dependent injury, complement component C3 fragment b (C3b) deposition was reduced, whereas proteinuria was diminished. In glomeruli of wild-type rats, the natural Hmox substrate, hemin, induced glomerular DAF. This effect was attenuated in glomeruli of Hmox1-/- rats and augmented in glomeruli of GECHO-1 rats. Hemin analogues differing in either metal or porphyrin ring functionalities, acting as competitive Hmox-substrate inhibitors, also increased glomerular DAF and reduced C3b deposition after spontaneous complement activation. In the presence of a DAF-blocking antibody, the reduction in C3b deposition was reversed. These observations establish HO-1 as a physiologic regulator of glomerular DAF and identify hemin analogues as inducers of functional glomerular DAF able to minimize C3b deposition.


Asunto(s)
Antígenos CD55/metabolismo , Glomerulonefritis/inmunología , Hemo-Oxigenasa 1/metabolismo , Hemina/inmunología , Glomérulos Renales/metabolismo , Animales , Antígenos CD55/genética , Activación de Complemento , Complemento C3b/inmunología , Complemento C3b/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Glomerulonefritis/enzimología , Glomerulonefritis/patología , Hemo-Oxigenasa 1/genética , Hemina/análogos & derivados , Glomérulos Renales/inmunología , Glomérulos Renales/lesiones , Glomérulos Renales/patología , Masculino , Proteinuria , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
8.
Int J Mol Sci ; 17(5)2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27153058

RESUMEN

Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI) is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.


Asunto(s)
Lesión Renal Aguda/metabolismo , Autofagia , Inmunidad Innata , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Lesión Renal Aguda/terapia , Animales , Apoptosis , Humanos , Regeneración
9.
J Biol Chem ; 290(40): 24592-603, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26306047

RESUMEN

Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-ß-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-ß signaling may present a potentially effective means for promoting scarless wound healing.


Asunto(s)
Proteínas Portadoras/fisiología , Membrana Celular/metabolismo , Proteínas Musculares/fisiología , Proteínas de Transporte Vesicular/fisiología , Cicatrización de Heridas/fisiología , Células 3T3 , Actinas/metabolismo , Animales , Diferenciación Celular , Movimiento Celular , Cicatriz/patología , Colágeno Tipo I/metabolismo , Fibroblastos/citología , Fibronectinas/metabolismo , Fibrosis/patología , Regulación de la Expresión Génica , Humanos , Hidrogeles/química , Queratinocitos/metabolismo , Proteínas de la Membrana , Ratones , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Conejos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Piel/patología , Proteínas de Motivos Tripartitos
10.
Biochem Biophys Res Commun ; 460(3): 786-92, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-25824035

RESUMEN

The differential localization of HO-1 in renal cells under conditions of injury, and the demonstration that exaggerated HO-1 expression can have detrimental rather than beneficial effects, raises the question of whether HO-1 expression in these cells is subject to control. The present study identifies a unique HO-1 expression pattern in the renal glomerulus indicative of presence of HO-1 expression control following prolonged HO-1 induction. HO-1 and HO-2 expression in response to the natural HO substrate/inducer Fe(++) protoporphyrin (PP) IX (hemin) was assessed in normal rat glomeruli. Following 18 h incubations with hemin (0-200 µM), HO-1 expression increased in a concentration-dependent manner and via a hemopexin (HPX) independent mechanism with no effect on HO-2. In incubations with higher hemin concentrations (400 µM), likely to be encountered in hemolytic disorders, HO-1 expression, decreased. This was preceded by a prolonged and sustained increase in HO-1 protein and was independent of the Fe(++) moiety as incubations with Cobalt protoporphyrin (CoPP) resulted in an identical expression pattern. The decrease of HO-1 protein could not be accounted for by proteasomal degradation since it was not reversed in co-incubations with hemin and the proteasome inhibitor, MG132, at concentrations sufficient to increase HO-1 glomerular content when used alone. Moreover, in the presence of MG132, a decrease of HO-1 expression also occurred at 100 and 200 µM hemin. The effect of MG132 was mimicked by two additional mechanistically different approaches which also raised HO-1 content: a) co-incubations of hemin with ZnPP which increased HO-1 protein when used alone, and b) glomerular HO-1 over expression achieved by SB transposon mediated transgenesis. In contrast, the decrease in HO-1 levels observed at high hemin concentrations was reversed in co-incubations with hemin and SnPP, which reduced HO-1 content when used alone. Expression of NF-E2 related factor 2 (Nrf2) protein, which mediates HO-1 induction in response to hemin, had a similar expression pattern with that of HO-1 protein indicating involvement of Nrf2 in the response of HO-1 to hemin. The above observations indicate presence of a HO-1 expression control mechanism in the glomerulus that may serve to protect it against potentially detrimental effects of exaggerated HO-1 expression.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Glomérulos Renales/enzimología , Animales , Hemina/administración & dosificación , Masculino , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
11.
Sci Transl Med ; 7(279): 279ra36, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25787762

RESUMEN

Injury to the renal proximal tubular epithelium (PTE) represents the underlying consequence of acute kidney injury (AKI) after exposure to various stressors, including nephrotoxins and ischemia/reperfusion (I/R). Although the kidney has the ability to repair itself after mild injury, insufficient repair of PTE cells may trigger inflammatory and fibrotic responses, leading to chronic renal failure. We report that MG53, a member of the TRIM family of proteins, participates in repair of injured PTE cells and protects against the development of AKI. We show that MG53 translocates to acute injury sites on PTE cells and forms a repair patch. Ablation of MG53 leads to defective membrane repair. MG53-deficient mice develop pronounced tubulointerstitial injury and increased susceptibility to I/R-induced AKI compared to wild-type mice. Recombinant human MG53 (rhMG53) protein can target injury sites on PTE cells to facilitate repair after I/R injury or nephrotoxin exposure. Moreover, in animal studies, intravenous delivery of rhMG53 ameliorates cisplatin-induced AKI without affecting the tumor suppressor efficacy of cisplatin. These findings identify MG53 as a vital component of reno-protection, and targeting MG53-mediated repair of PTE cells represents a potential approach to prevention and treatment of AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Animales , Antineoplásicos/efectos adversos , Cisplatino/efectos adversos , Perros , Fibrosis , Humanos , Riñón/efectos de los fármacos , Riñón/fisiología , Túbulos Renales/metabolismo , Masculino , Proteínas de la Membrana , Ratones , Ratones Noqueados , Ratones Desnudos , Fenotipo , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/metabolismo , Proteínas de Motivos Tripartitos
12.
J Biol Chem ; 290(6): 3377-89, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25480788

RESUMEN

Postnatal skeletal muscle mass is regulated by the balance between anabolic protein synthesis and catabolic protein degradation, and muscle atrophy occurs when protein homeostasis is disrupted. Autophagy has emerged as critical in clearing dysfunctional organelles and thus in regulating protein turnover. Here we show that endolysosomal two-pore channel subtype 2 (TPC2) contributes to autophagy signaling and protein homeostasis in skeletal muscle. Muscles derived from Tpcn2(-/-) mice exhibit an atrophic phenotype with exacerbated autophagy under starvation. Compared with wild types, animals lacking TPC2 demonstrated an enhanced autophagy flux characterized by increased accumulation of autophagosomes upon combined stress induction by starvation and colchicine treatment. In addition, deletion of TPC2 in muscle caused aberrant lysosomal pH homeostasis and reduced lysosomal protease activity. Association between mammalian target of rapamycin and TPC2 was detected in skeletal muscle, allowing for appropriate adjustments to cellular metabolic states and subsequent execution of autophagy. TPC2 therefore impacts mammalian target of rapamycin reactivation during the process of autophagy and contributes to maintenance of muscle homeostasis.


Asunto(s)
Autofagia , Canales de Calcio/metabolismo , Músculo Esquelético/metabolismo , Transducción de Señal , Animales , Canales de Calcio/genética , Homeostasis , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Lisosomas/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Péptido Hidrolasas/metabolismo , Fagosomas/metabolismo , Fagosomas/ultraestructura , Estrés Fisiológico , Serina-Treonina Quinasas TOR/metabolismo
13.
Nat Commun ; 5: 4387, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25034454

RESUMEN

Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischaemia-reperfusion and overventilation-induced injury to the lung when compared with wild-type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Proteínas Portadoras/metabolismo , Proteínas Portadoras/farmacología , Membrana Celular/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Lesión Pulmonar Aguda/genética , Animales , Proteínas Portadoras/administración & dosificación , Proteínas Portadoras/genética , Hipoxia de la Célula/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Humanos , Pulmón/patología , Masculino , Proteínas de la Membrana , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Respiración Artificial/efectos adversos , Proteínas de Motivos Tripartitos
14.
J Vis Exp ; (84): e50898, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24638093

RESUMEN

Maintaining homeostatic Ca(2+) signaling is a fundamental physiological process in living cells. Ca(2+) sparks are the elementary units of Ca(2+) signaling in the striated muscle fibers that appear as highly localized Ca(2+) release events mediated by ryanodine receptor (RyR) Ca(2+) release channels on the sarcoplasmic reticulum (SR) membrane. Proper assessment of muscle Ca(2+) sparks could provide information on the intracellular Ca(2+) handling properties of healthy and diseased striated muscles. Although Ca(2+) sparks events are commonly seen in resting cardiomyocytes, they are rarely observed in resting skeletal muscle fibers; thus there is a need for methods to generate and analyze sparks in skeletal muscle fibers. Detailed here is an experimental protocol for measuring Ca(2+) sparks in isolated flexor digitorm brevis (FDB) muscle fibers using fluorescent Ca(2+) indictors and laser scanning confocal microscopy. In this approach, isolated FDB fibers are exposed to transient hypoosmotic stress followed by a return to isotonic physiological solution. Under these conditions, a robust Ca(2+) sparks response is detected adjacent to the sarcolemmal membrane in young healthy FDB muscle fibers. Altered Ca(2+) sparks response is detected in dystrophic or aged skeletal muscle fibers. This approach has recently demonstrated that membrane-delimited signaling involving cross-talk between inositol (1,4,5)-triphosphate receptor (IP3R) and RyR contributes to Ca(2+) spark activation in skeletal muscle. In summary, our studies using osmotic stress induced Ca(2+) sparks showed that this intracellular response reflects a muscle signaling mechanism in physiology and aging/disease states, including mouse models of muscle dystrophy (mdx mice) or amyotrophic lateral sclerosis (ALS model).


Asunto(s)
Calcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Calcio/análisis , Señalización del Calcio , Modelos Animales de Enfermedad , Ratones , Fibras Musculares Esqueléticas/química , Distrofias Musculares/metabolismo , Presión Osmótica , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo
15.
Nat Commun ; 4: 2354, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23965929

RESUMEN

Mitsugumin 53 (MG53) negatively regulates skeletal myogenesis by targeting insulin receptor substrate 1 (IRS-1). Here, we show that MG53 is an ubiquitin E3 ligase that induces IRS-1 ubiquitination with the help of an E2-conjugating enzyme, UBE2H. Molecular manipulations that disrupt the E3-ligase function of MG53 abolish IRS-1 ubiquitination and enhance skeletal myogenesis. Skeletal muscles derived from the MG53-/- mice show an elevated IRS-1 level with enhanced insulin signalling, which protects the MG53-/- mice from developing insulin resistance when challenged with a high-fat/high-sucrose diet. Muscle samples derived from human diabetic patients and mice with insulin resistance show normal expression of MG53, indicating that altered MG53 expression does not serve as a causative factor for the development of metabolic disorders. Thus, therapeutic interventions that target the interaction between MG53 and IRS-1 may be a novel approach for the treatment of metabolic diseases that are associated with insulin resistance.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Insulina/metabolismo , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Línea Celular , Diabetes Mellitus/metabolismo , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Proteínas Sustrato del Receptor de Insulina/genética , Resistencia a la Insulina , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación
16.
Transl Res ; 158(4): 249-61, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21925121

RESUMEN

Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/enzimología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Glomérulos Renales/inmunología , Glomérulos Renales/lesiones , Animales , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Glomérulos Renales/enzimología , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Investigación Biomédica Traslacional
17.
Am J Physiol Renal Physiol ; 297(3): F629-38, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19587144

RESUMEN

Induction of heme oxygenase (HO)-1 is a key defense mechanism against oxidative stress. Compared with tubules, glomeruli are refractory to HO-1 upregulation in response to injury. This can be a disadvantage as it may be associated with insufficient production of cytoprotective heme-degradation metabolites. We, therefore, explored whether 1) targeted HO-1 expression can be achieved in glomeruli without altering their physiological integrity and 2) this expression reduces proteinuria in immune injury induced by an anti-glomerular basement membrane (GBM) antibody (Ab). We employed a 4.125-kb fragment of a mouse nephrin promoter downstream to which a FLAG-tagged hHO-1 cDNA sequence was inserted and subsequently generated transgenic mice from the FVB/N parental strain. There was a 16-fold higher transgene expression in the kidney than nonspecific background (liver) while the transprotein immunolocalized in glomerular epithelial cells (GEC). There was no change in urinary protein excretion, indicating that GEC-targeted HO-1 expression had no effect on glomerular protein permeability. Urinary protein excretion in transgenic mice with anti-GBM Ab injury (days 3 and 6) was significantly lower compared with wild-type controls. There was no significant change in renal expression levels of profibrotic (TGF-beta1) or anti-inflammatory (IL-10) cytokines in transgenic mice with anti-GBM Ab injury. These observations indicate that GEC-targeted HO-1 expression does not alter glomerular physiological integrity and reduces proteinuria in glomerular immune injury.


Asunto(s)
Células Epiteliales/enzimología , Glomerulonefritis/enzimología , Hemo-Oxigenasa 1/metabolismo , Glomérulos Renales/enzimología , Proteinuria/prevención & control , Animales , Autoanticuerpos , Modelos Animales de Enfermedad , Células Epiteliales/patología , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Hemo-Oxigenasa 1/genética , Interleucina-10/metabolismo , Glomérulos Renales/patología , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Permeabilidad , Regiones Promotoras Genéticas , Proteinuria/enzimología , Proteinuria/inmunología , Proteinuria/patología , Factor de Crecimiento Transformador beta1/metabolismo
18.
Exp Biol Med (Maywood) ; 231(5): 576-84, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16636306

RESUMEN

In glomerular immune injury, the inducible isoform of nitric oxide synthase (iNOS) becomes a major catalyst of NO production. Although iNOS-catalyzed NO production is sustained and can be cytotoxic, iNOS inhibition exacerbates the magnitude of proteinuria that accompanies immune injury. To investigate putative mechanisms of this effect, we assessed changes in glomerular permeability to albumin by using the following two approaches: (i) an in vivo rat model of glomerular immune injury induced by antibody against the glomerular basement membrane (GBM), in which urine albumin excretion was measured under conditions of iNOS inhibition, and (ii) an ex vivo model of isolated rat glomeruli, in which changes in glomerular capillary permeability to albumin were assessed under conditions of NOS inhibition. In rats with anti-GBM antibody-induced glomerular injury, there was an increase in urine albumin excretion. Treatment with two structurally dissimilar iNOS inhibitors at doses sufficient to decrease urine nitrate and/or nitrite exacerbated proteinuria. In these animals, urine excretion of the isoprostane 8-iso-PGF2alpha (marker of oxidative stress) was increased. In isolated glomeruli incubated with the NOS inhibitor L-NMMA, the permeability to albumin increased. This effect was reversed by the NO donor DETA NONOate and by the superoxide dismutase mimetic Tempol. We conclude that NOS-catalyzed NO production is an important mechanism in regulating glomerular permeability to protein. This mechanism involves control of the bioavailability of superoxide.


Asunto(s)
Isoenzimas/antagonistas & inhibidores , Glomérulos Renales , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Proteinuria/inmunología , Albuminuria , Animales , Capilares/citología , Capilares/metabolismo , Permeabilidad Capilar , Creatinina/orina , Isoenzimas/inmunología , Isoprostanos/orina , Glomérulos Renales/citología , Glomérulos Renales/inmunología , Glomérulos Renales/patología , Óxido Nítrico/orina , Óxido Nítrico Sintasa de Tipo II/inmunología , Estrés Oxidativo , Ratas
19.
J Lab Clin Med ; 147(3): 150-5, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16503246

RESUMEN

In a rat model of macrophage-dependent glomerular immune injury induced by administration of antibody against the glomerular basement membrane (anti-GBM), the authors assessed the anti-proteinuric effect of Heme Oxygenase-1 (HO-1) induction. Rats received anti-GBM antibody alone, anti-GBM antibody and treatment with the HO-1 inducer, hemin, or non-immune serum (controls). Urine protein, creatinine, and nitrite/nitrate excretion were measured on days 5, 7, and 14 after administration of the anti-GBM antibody. In hemin-treated animals with anti-GBM antibody-induced immune injury, HO-1 immunolocalized in macrophages infiltrating glomeruli and in tubular epithelial cells. In these animals, proteinuria was decreased. There was also a decrease in blood urea nitrogen (BUN) levels without a change in serum creatinine or systemic blood pressure. The observations establish the anti-proteinuric effect of hemin induction. This effect could be mechanistically linked to blunting of the ability of infiltrating macrophages to cause injury or to changes in tubular handling of filtered protein.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/enzimología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/patología , Hemo-Oxigenasa 1/biosíntesis , Hemo-Oxigenasa 1/metabolismo , Glomérulos Renales/inmunología , Glomérulos Renales/patología , Animales , Presión Sanguínea/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Creatinina , Inducción Enzimática , Femenino , Hemo-Oxigenasa 1/genética , Hemina/uso terapéutico , Sueros Inmunes , Macrófagos/patología , Nefritis , Nitratos/orina , Transporte de Proteínas , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , Ratas , Ratas Endogámicas Lew , Factores de Tiempo
20.
J Pharmacol Exp Ther ; 316(3): 1249-54, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16303918

RESUMEN

Overproduction of superoxide (O2*) occurs in glomerular disease and may overwhelm the capacity of superoxide dismutase (SOD), thereby intensifying oxidant injury by O2* and related radical species that disrupt the glomerular capillary permeability barrier to protein. We examined the efficacy of the SOD mimetic tempol in preserving glomerular permeability to protein using 1) a rat model of glomerular immune injury induced by an antiglomerular basement membrane antibody (anti-GBM), and 2) isolated rat glomeruli in which injury was induced by the cytokine tumor necrosis factor-alpha (TNFalpha). To induce glomerular immune injury, rats received anti-GBM using a protocol that results in prominent infiltration of glomeruli by macrophages and in which macrophage-derived TNFalpha has been shown to mediate albuminuria. To increase glomerular capillary permeability to albumin (P(alb)) ex vivo, isolated glomeruli were incubated with TNFalpha at concentrations (0.5-4.0 microg/ml) known to stimulate O2* production. Increments in P(alb) were detected by measuring changes in glomerular volume in response to an applied oncotic gradient. Significant increases in the urine excretion of albumin and F(2alpha)-isoprostane were observed in rats with glomerular immune injury without a significant change in systolic blood pressure. Tempol treatment significantly reduced urine isoprostane and albumin excretion. In isolated glomeruli, TNFalpha increased P(alb) and tempol abrogated this effect, both in a dose-dependent manner. These observations indicate that SOD mimetics can preserve the glomerular permeability barrier to protein under conditions of oxidative stress from O2* production.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Óxidos N-Cíclicos/farmacología , Glomérulos Renales/metabolismo , Proteínas/metabolismo , Animales , Anticuerpos/toxicidad , Autoanticuerpos , Glomérulos Renales/inmunología , Proteinuria/tratamiento farmacológico , Ratas , Ratas Endogámicas Lew , Marcadores de Spin , Superóxidos/metabolismo , Factor de Necrosis Tumoral alfa/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...