Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Sci Total Environ ; 935: 173334, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763191

RESUMEN

Electronic and electric waste (e-waste) management strategies often fall short in dealing with the plastic constituents of printed circuit boards (PCB). Some plastic materials from PCB, such as epoxy resins, may release contaminants, but neither potential environmental impact has been assessed nor mitigation strategies have been put forward. This study assessed the biodegradation of microplastics (1-2 mm in size) from PCB by the fungus Penicillium brevicompactum over 28 days, thus contributing to the discussion of mitigation strategies for decreasing the environmental impact of such plastics in the environment. The capacity of P. brevicompactum to induce microplastic fragmentation and degradation has been determined by the increased the number of smaller-sized particles and microplastic mass reduction (up to 75 % within 14 days), respectively. The occurrence of chain scission and oxidation of microplastics exposed to P. brevicompactum when compared with the control conditions (which occurred only after 28 days of exposure) can be observed. Furthermore, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy performed in dried biomass put in evidence an increase in the absorption intensities in regions that could be attributed to functional groups associated with carbohydrates. The results underline the potential role of the genus Penicillium, particularly P. brevicompactum, in the biodegradation of microplastics from PCB, thus providing the basis for further exploration of its potential for e-waste bioremediation and research on the underlying mechanisms for sustainable approaches to mitigate e-waste pollution.

2.
Molecules ; 29(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257246

RESUMEN

Although the impacts of plastic pollution have long been recognized, the presence, pervasiveness, and ecotoxicological consequences of microplastic-i.e., plastic particles < 5 mm-contamination have only been explored over the last decade. Far less focus has been attributed to the role of these materials and, particularly, microplastics, as vectors for a multitude of chemicals, including those (un)intentionally added to plastic products, but also organic pollutants already present in the environment. Owing to the ubiquitous presence of microplastics in all environmental matrices and to the diverse nature of their chemical and physical characteristics, thoroughly understanding the mechanistic uptake/release of these compounds is inherently complex, but necessary in order to better assess the potential impacts of both microplastics and associated chemicals on the environment. Herein, we delve into the known processes and factors affecting these mechanisms. We center the discussion on microplastics and discuss some of the most prominent ecological implications of the sorption of this multitude of chemicals. Moreover, the key limitations of the currently available literature are described and a prospective outlook for the future research on the topic is presented.

3.
Sci Total Environ ; 912: 169287, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38103621

RESUMEN

The application of bio-based biodegradable mulch films in agriculture has raised environmental concerns regarding their potential impacts on adjacent freshwater ecosystems. This study investigated the biodegradation of microplastics derived from a bio-based biodegradable mulch (bio-MPs) and its acute and chronic ecotoxicity considering relevant scenarios (up to 200 and 250 mg/kg of sediment, using pristine and/or UV-aged particles), using the fungus Penicillium brevicompactum and the dipteran Chironomus riparius as model organisms, respectively, due to their ecological relevance in freshwater environments. Fourier-transform infrared spectroscopy analysis suggested changes in the fungus's carbohydrate reserves and bio-MP degradation through the appearance of low molecular weight esters throughout a 28 day biodegradation test. In a short-term exposure (48 h), C. riparius larvae exposed to pristine or UV-aged bio-MPs had up to 2 particles in their gut. Exposure to pristine bio-MPs decreased larval aerobic metabolism (<20 %) and increased neurotransmission (>15 %), whereas exposure to UV-aged bio-MPs activated larval aerobic metabolism (>20 %) and increased antioxidant defences (catalase activity by >30 % and glutathione-s-transferase by >20 %) and neurotransmission (>30 %). Longer-term (28-d) exposure to UV-aged bio-MPs did not affect larval survival and growth nor the dipteran's emergence but increased male numbers (>30 %) at higher concentrations. This study suggests that the selected agricultural bio-based mulch film is prone to biodegradation by a naturally occurring fungus. However, there is a potential for endocrine disruption in the case of prolonged exposures to UV-aged microplastics. This study emphasises the importance of further research to elucidate the potential ecological effects of these plastic products, to ensure effective management practices, and to establish new regulations governing their use.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Masculino , Microplásticos/toxicidad , Plásticos/toxicidad , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Agricultura , Larva , Agua Dulce
4.
ACS Mater Au ; 3(4): 351-359, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38090123

RESUMEN

An electrodeposition technique of low-enriched uranium onto boron-doped diamond (BDD) electrodes for uranium electro-assembling, sequestration, uranium electrowinning (as the electroextraction alternative), and future neutron detection applications has been developed. Our findings through physicochemical characterization and an in-depth XPS analysis show that the U/BDD system consists of a blend of uranium oxides with IV, V, and VI oxidation states. Results show that U5+ is present and stable under open atmospheric conditions. The U electrodeposition on BDD creates smooth surfaces, free of voids, with uniform deposition of homogeneous tiny particles of stable uranium oxides, instead of chunky particles, and uranium compound mixtures, like large fibers of the precursor uranyl. Our electrochemical method operates without high temperatures or hazardous compounds. Uranium corrosion and oxidation processes occur spontaneously and parallel to the electrochemical formation of metallic uranium on BDD electrode surfaces, with metallic uranium reacting with water, producing fine particles of UO2. This work represents the first attempt to create a surface of uranium oxides, where the film thickness can be controlled for future applications, e.g., improving sensitivity in neutron detection technologies. Our U electro-assembling method provides a sustainable strategy for uranium electro-recovery from nuclear wastes, immobilizing uranium as a storage method or as U-film fabrication (U/BDD) for future neutron detection applications. Besides, this work contributes to uranium-based technologies, improving them and providing a better understanding of their electrochemical properties, e.g., uranium redox processes, uranium oxides' formation, and stability evaluation. These properties are of remarkable need for uranium-based target formation. The use of our U/BDD method is proposed as an environmental protocol to recover and immobilize uranium-235, and other fissile materials, from civil and defense wastes, contaminated systems, and stockpiles.

5.
J Chromatogr A ; 1706: 464288, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37573757

RESUMEN

Analysis of complex environmental matrices poses an extreme challenge for analytical chemists due to the vast number of known and unknown compounds, with very diverse chemical and physical properties. The need for a holistic characterisation of this complexity has sparked the development of effective tools to unravel the chemical composition of such environmental samples. Multidimensional chromatographic methods, namely comprehensive two-dimensional (2D) gas and liquid chromatography (GC × GC and LC × LC, respectively), coupled to different detection systems have emerged as powerful tools with the capability to address this challenge. While GC × GC has steadily gained popularity in environmental analysis, LC × LC is surprisingly less attractive in this research field. This critical review article explores the potential reasons why LC × LC is not the dominant technique used in environmental analysis as compared to GC × GC, while simultaneously highlighting the quite unique role of LC × LC for the target and untargeted analysis of complex environmental matrices. The possible combinations of stationary phases, the important role of the interfacing valve as the heart of an LC × LC assembly, the existing optimization strategies for improving the separation power in the 2D chromatographic space, and the need for user-friendly mathematical tools for multidimensional data handling are also discussed. Finally, a set of practical measures are suggested to increase the use and secure the success of LC × LC in environmental analysis.


Asunto(s)
Cromatografía Liquida , Cromatografía Liquida/métodos , Cromatografía de Gases/métodos
6.
Sci Total Environ ; 904: 166232, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37574074

RESUMEN

Disposable facemasks represent a new form of environmental contamination worldwide. This study aimed at addressing the abundance of facemasks in an overlooked natural environment with high ecological and economic value - the wetlands (Ria de Aveiro, Portugal, as study case), evaluating their potential biodegradation using naturally occurring fungi and assessing the potential ecotoxicity of released microfibres on local bivalves. All masks collected within 6500 m2 area of Aveiro wetland were 100 % disposable ones (PP-based, confirmed by Fourier transform infrared spectroscopy - FTIR) with an initial abundance of 0.0023 items/m2 in Sept. 2021, which was reduced by ∼40 % in Apr. 2022 and ∼87 % in Sept. 2022, as a reflection of the government policies. Analysis of the carbonyl index (0.03 to 1.79) underlined their state of degradation, primarily due to sun exposure during low tides. In laboratory conditions, 1 mm2 microplastics obtained from new disposable facemasks were prone to biodegradation by Penicillium brevicompactum and Zalerion maritimum inferred from microplastics mass loss (∼22 to -26 % and ∼40 to 50 %, respectively) and FTIR spectra (particularly in the hydroxyl and carbonyl groups). In addition, microfibres released from facemasks induced sublethal effects on the clam, Venerupis corrugata, mostly in their UV-aged form when compared to pristine ones, characterised by a decrease in cellular energy allocation (CEA) and an increase in aerobic energy metabolism (ETS). Concomitantly, clams exposed to 1250 items/L of UV-aged microplastics (similar to field-reported concentrations) expressed greater clearance capacity, indicating a need to compensate for the potential energy unbalance. This study provides the first baseline monitoring of facemasks in wetlands while bringing new evidence on their biodegradation and ecotoxicity, considering environmentally relevant conditions and keystone organisms in such environments. Such studies require scientific attention for rapid regulatory action against this emerging and persistent pollutant, also targeting remediation and mitigation strategies considering these items under pandemic scenarios.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Plásticos/análisis , Microplásticos , Máscaras , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental
7.
Mar Pollut Bull ; 194(Pt B): 115284, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478783

RESUMEN

This study investigates the potential of MPs as carriers of pollutants as they can strengthen bioaccumulation of toxic metals on marine organisms. For the first time, the interaction of the metal palladium (Pd) with the widespread MPs, both with increasing concentrations in water environments from anthropogenic sources, was tested. Mytilus galloprovincialis, an important seafood product, was exposed to Pd (24 h) in two ways: water-dissolved and MPs-adsorbed, with depuration followed for 144 h. Quantification of Pd in tissues shown an accumulation 2-3 times higher (59 % of initial Pd) for mussels exposed to MPs-adsorbed Pd and higher in digestive gland than when exposed to water-dissolved Pd (25 %; higher in gills). Additionally, it was demonstrated that Pd induced oxidative stress and altered the feeding behavior of mussels. Therefore, this work support MPs as being vectors of metals (i.e. Pd) to enhance their bioaccumulation on marine organisms which highlights ecological risk of these emerging pollutants.


Asunto(s)
Mytilus , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/toxicidad , Paladio/farmacología , Bioacumulación , Contaminantes Químicos del Agua/análisis , Alimentos Marinos/análisis , Agua
8.
Mar Pollut Bull ; 193: 115107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327722

RESUMEN

Metal(oid)s concentrations have been quantified in plastic pieces collected from four beaches located in the Mediterranean coast of Spain with different characteristics (i.e. anthropogenic pressure, zone). Metal(oid)s content was also related to selected plastic criteria (i.e. color, degradation status, polymer). The selected elements were quantified with mean concentrations in the sampled plastics with the following order: Fe > Mg > Zn > Mn > Pb > Sr > As > Cu > Cr > Ni > Cd > Co. Moreover, black, brown, PUR, PS, and coastal line plastics concentrated the higher metal(oid)s levels. Local of sampling (influence of mining exploitation) and severe degradation were key factors for uptake of metal(oid)s from water by plastics as modification of surfaces strengths their adsorption capacity. Determined high levels of Fe, Pb and Zn in plastics reflected the pollution degree of the marine areas. Therefore, this study is a contribution for the potential use of plastics as pollution monitors.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Efectos Antropogénicos , Plomo , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental , Monitoreo del Ambiente , Plásticos
9.
Sci Total Environ ; 892: 164509, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37257605

RESUMEN

As the World slowly emerged from the then-ongoing pandemic, War broke out in Europe with the invasion of Ukraine by Russia. The enduring military conflict in Ukraine has had sweeping consequences at the human, social, economic, and environmental levels, not only for the nations involved but across Europe and globally. Damaged infrastructures, severe disruption of economic activity, and forced migration have led to negative impacts on sustainability. The COVID-19 pandemic has added another layer of complexity to this already challenging situation, as the virus has further disrupted economic activity and strained healthcare systems. Herein, we examine how the intersection of war and COVID-19 affect the United Nations' 2030 Agenda for Sustainable Development. How these intersecting challenges have impacted efforts to build a more sustainable future, and how these impacts have a global reach are also assessed. The broader implications of this case for understanding the linkages between conflict, pandemics, and sustainability more generally are also considered, relating these with the United Nations' Sustainable Development Goals (SDG) Agenda for 2030.


Asunto(s)
COVID-19 , Personal Militar , Humanos , Ucrania/epidemiología , Pandemias , COVID-19/epidemiología , Europa (Continente)
10.
ACS Nano ; 17(4): 3492-3505, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36753696

RESUMEN

Designing N-coordinated porous single-atom catalysts (SACs) for the oxygen reduction reaction (ORR) is a promising approach to achieve enhanced energy conversion due to maximized atom utilization and higher activity. Here, we report two Co(II)-porphyrin/ [2,1,3]-benzothiadiazole (BTD)-based covalent organic frameworks (COFs; Co@rhm-PorBTD and Co@sql-PorBTD), which are efficient SAC systems for O2 electrocatalysis (ORR). Experimental results demonstrate that these two COFs outperform the mass activity (at 0.85 V) of commercial Pt/C (20%) by 5.8 times (Co@rhm-PorBTD) and 1.3 times (Co@sql-PorBTD), respectively. The specific activities of Co@rhm-PorBTD and Co@sql-PorBTD were found to be 10 times and 2.5 times larger than that of Pt/C, respectively. These COFs also exhibit larger power density and recycling stability in Zn-air batteries compared with a Pt/C-based air cathode. A theoretical analysis demonstrates that the combination of Co-porphyrin with two different BTD ligands affords two crystalline porous electrocatalysts having different d-band center positions, which leads to reactivity differences toward alkaline ORR. The strategy, design, and electrochemical performance of these two COFs offer a pyrolysis-free bottom-up approach that avoids the creation of random atomic sites, significant metal aggregation, or unpredictable structural features.

11.
J Environ Chem Eng ; 11(2): 109308, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36643396

RESUMEN

During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.

12.
Animals (Basel) ; 12(15)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35953968

RESUMEN

Companion animals living in urban areas are exposed to environmental contaminants, which may include microplastics. A preliminary study was conducted by collecting postmortem samples from the internal tissue (lungs, ileum, liver, kidney, and blood clots) of 25 dogs (Canis familiaris) and 24 cats (Felis catus) living in an urban environment in Porto metropolitan area, Portugal. Suspected microplastics were found in 80 samples from 35 animals (18 cats and 17 dogs), often occurring in more than one tissue of the same animal (71.4%), primarily under small sizes (50.3% as 1-10 µm). Micro-Raman spectroscopy confirmed a fraction of particles as common polymer types (e.g., polyethylene terephthalate). However, the number of particles was very low. This study highlights the possibilities of the internalization and distribution of microplastics in the internal tissues of terrestrial vertebrates.

13.
Sci Total Environ ; 828: 154269, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276171

RESUMEN

Biobased and biodegradable plastic mulch films (aka, mulch biofilm) have emerged as a sustainable alternative to conventional plastic mulch films in agriculture, promising to reduce soil contamination with plastic residues through in situ biodegradation. However, current standards certifying biodegradable plastics cannot predict biodegradability in natural settings. The scarce studies considering the possible biodegradation and ecotoxicity of mulch biofilms in soil systems question the environmental friendliness of these alternative options. This study assessed the biodegradation of a commercially available mulch biofilm by the soil-dwelling fungus Penicillium brevicompactum (in solid culture media and soil for 15 and 28 days, respectively), and the ecotoxicological effects of mulch biofilm microplastics on the earthworm Eisenia andrei (pristine or UV-weathered, at 0.125-0.250-0.500 g/kg). Results (from microplastics' mass loss, microscopy, and FTIR spectroscopy) suggest that the presence of P. brevicompactum promotes mulch biofilm's biodegradation. Exposure to environmental concentrations of pristine biofilm microplastics (and its ingestion) increased earthworms' sensitivity to touch, induced physiological alterations, decreased energy reserves, and decreased their reproduction (>30%). Conversely, exposure to weathered biofilm microplastics slightly increased earthworms' sensitivity, as well as carbohydrate reserves,without affecting their reproduction. The tested mulch biofilm seems to be, at first sight, an environmentally friendly alternative as it presented susceptibility for biodegradation by a widespread fungus, and the absence of ecotoxicological chronic effects on a key macroinvertebrate species in soil ecosystems when considering environmental relevant concentrations and plastics weathered conditions. Notwithstanding, the obtained results highlight the need to revise current standards, as they often neglect the role of, and their chronic effects on, naturally occurring organisms.


Asunto(s)
Plásticos Biodegradables , Oligoquetos , Contaminantes del Suelo , Agricultura , Animales , Biopelículas , Ecosistema , Hongos , Microplásticos , Plásticos , Suelo , Contaminantes del Suelo/toxicidad
14.
Environ Sci Pollut Res Int ; 29(32): 48926-48936, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35199273

RESUMEN

Cigarette butts (CBs) are non-biodegradable residues of synthetic origin, prevalent on beaches all over the world. The study evaluates discarded CBs on an intensely used urban beach, determining variations in physical and chemical characteristics. CBs collected were observed, classified, and visually separated according to a proposed scale of four levels of degradation to test the potential match between physical and chemical decay. CBs (un-smoked, smoked, and discarded) were used to determine the average length (cm) and mass (g) in order to observe changes in these parameters among the levels. Cigarette butts experience consecutive mass loss during environmental exposure. Scanning electron microscopy (SEM) images were obtained to assess physical changes in fibers due to smoking. FTIR-ATR was used to assess CBs new (un-smoked), smoked, and discarded samples in relation to cellulose acetate decay. The FTIR-ATR spectroscopy of the most visually degraded cigarette butts indicated modifications in the spectra when compared to un-smoked cigarettes.


Asunto(s)
Productos de Tabaco , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Humo/análisis , Fumar , Nicotiana
15.
Sci Total Environ ; 815: 152941, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007581

RESUMEN

The extraction of microplastics from organic-rich freshwater samples is challenging and limited information is available in the literature. This study aims at developing efficient methods for water volume reduction and organic matter removal in freshwater samples, while focusing on the reduction of the economic and environmental costs, maintaining microplastics integrity and avoiding contamination. For the water volume reduction approach, centrifuging freshwater samples (water, sediment, algae, leaves, driftwood, fish tissue) at different speeds (3500, 6000 rpm) and times (5, 10 min) showed that 3500 rpm for 5 min was efficient to settle the mineral and organic material, while preserving the polymers and showing high microplastic recovering rates (93 ± 6%). These recovery rates were significantly higher than the traditional sieving approach (77 ± 22%). The posterior minimal consumption of reagents resulting from the reduction of water volume helped to reduce the economic and environmental costs of the devised methodology, becoming more aligned with green chemistry principles. For biogenic organic matter removal, four digestion solutions were tested on freshwater samples, namely 10% potassium hydroxide, Fenton reagent (30% H2O2 + Fe(II)), 7% and 10% sodium hypochlorite (NaClO), under 3 periods of time (1, 6 and 15 h), at 50 °C. Both 7% and 10% NaClO showed the highest rates of organic matter removal (86 ± 1% and 90 ± 1%, respectively), after 6 h at 50 °C. Exposure of virgin and aged polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, nylon, polyethylene terephthalate) to NaClO showed no weight, visual, surface structure, Fourier transform infrared spectra and carbonyl index changes, except for nylon, although not to an extent that affected its identification. This method resulted in high recovery rates of polymers (92 ± 6%). Thus, 7% NaClO at 50 °C for 6 h (or overnight) may be efficiently used for microplastic analysis in organic-rich freshwater samples.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Agua Dulce , Peróxido de Hidrógeno , Plásticos , Contaminantes Químicos del Agua/análisis
16.
Sci Total Environ ; 815: 152857, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995602

RESUMEN

The presence of aromatic compounds in rainwater is a matter of concern, mainly when the use of rainwater in buildings is intended. The present work aimed to assess the oxidation of a mixture of small aromatic compounds (benzoic, 3,5-dihydroxybenzoic and syringic acids) in rainwater by the UV/H2O2 process, and the possibility of its optimization by the response surface methodology. The extent of oxidation was assessed by ultraviolet-visible and molecular fluorescence spectroscopies. During the oxidation of the mixture new chromophoric compounds were formed at an initial stage, but they were then degraded at a later stage. The increase of the H2O2 concentration, resulted in a higher extent of oxidation, while the initial pH value showed no influence in the oxidation of the mixture. The optimization of the oxidation was performed using the uniform design with the factors: initial H2O2 concentration, initial pH, and reaction time. The response surface model found, through the best subsets regression, described the extent of oxidation as function of the following variables: initial H2O2 concentration and reaction time, interaction between them, and also their respective quadratic forms. The optimal conditions, the lowest H2O2 concentration (3.1 mM) for a selected maximum reaction time (4 h), were applied to rainwater samples spiked with the mixture of contaminants and resulted in an extent of oxidation higher than 99.5%, validating the application of the model to real samples. Therefore, the UV/H2O2 process coupled to its optimization via response surface methodology may be an alternative for rainwater treatment in buildings.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Compuestos Orgánicos , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
17.
Front Environ Sci Eng ; 16(1): 5, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34697576

RESUMEN

As a European Union (EU) member, Portugal must comply with reductions in plastic waste. In Portugal, the 330 items/100 m of beach litter, comprising up to 3.9 million pieces and of which 88% is plastic, is higher than the EU median (149 items/100 m) and must be reduced to 20 items/100 m (94%). Integrative measures are needed to reduce littering and improve plastics' use and disposal under the circular economy. Of this 414 kt of plastic packaging waste, 163 kt were declared plastic packaging, 140 kt subjected to recycling, and 94 kt to energy recovery. The current recycling rate of plastic packaging (34%) should be improved to reach EU recycling averages (42%) and goals and to provide widespread benefits, considering revenues of 167 €/t. As a net importer of waste, Portugal could benefit from the valorization of imported waste. Besides increased recycling, pyrolysis and gasification could provide short-term alternatives for producing value-added substances from plastic waste, such as hydrogen, consistent with the National Plan of Hydrogen and improving ongoing regulations on single-use plastics. This manuscript provides an integrative view of plastics in Portugal, from use to disposal, providing specific recommendations under the circular economy. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11783-021-1439-x and is accessible for authorized users.

18.
Sci Total Environ ; 816: 151642, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822904

RESUMEN

Microplastics are ubiquitous contaminants of freshwater ecosystems. However, few ecotoxicity assays have been conducted on freshwater organisms using environmentally relevant concentrations of virgin and weathered microplastics. This work assessed the adverse effects of virgin and artificially weathered fragments of polystyrene and polypropylene on the microalga Raphidocelis subcapitata (72 h growth inhibition assay) and on embryos of the fish Danio rerio (96 h fish embryo assay) under environmentally relevant concentrations (2000-200,000 MP L-1) and high concentrations (12.5-100 mg L-1). Sizes of microplastics were measured as tens (polystyrene) to hundreds (polypropylene) of micrometers, while aging was assessed by measuring the carbonyl index. In the microalga, the tested high concentrations promoted growth, while environmentally relevant concentration induced either growth inhibition or promotion. In zebrafish embryos, environmentally relevant concentrations decreased body length and heart rates. No relevant effects were observed in organisms exposed to high concentrations for mortality, malformations, hatching rates, and swimming bladder inflation. Virgin microplastics presented slightly higher toxicity but direct comparison was hindered by the lack of a linear dose-response curve. Despite the lack of a clear pattern, adverse effects were often observed in the lowest environmentally relevant concentrations, raising concerns over the impacts of microplastics on freshwater ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Ecosistema , Plásticos/toxicidad , Polipropilenos , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
19.
Sci Total Environ ; 808: 152012, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856284

RESUMEN

Marine ecosystems represent major sinks for persistent organic pollutants (POPs). Yet, while their regulations fit localized activity and emissions, POPs are mobile and can persist away from their source. The present review draws an environmental diagnostic of the organic substances studied over the past forty months, which ones accumulated the most, and where. Maximum reported concentration was used as a proxy for the accumulation of contaminants. POPs occurrences studied in the Jan 2018-April 2021 period were recorded into a database, along with (i) the geographical location of the sample and its coastal or offshore origin, (ii) the type of compartment analyzed (water vs sediment), as well as (iii) the POPs and the sample physical-chemical parameters reported. In the articles reviewed, maximum reported concentrations of POPs were in the ng/L range in seawater and in the µg/kg range in sediments. Some hotspots presented concentrations high enough to represent a hazard for sea organisms in the water columns (µg/L range) or in surficial sediments (mg/kg range). On a global scale, offshore (>1 km from the coast) maximum reported concentrations were, for the majority of the POPs, equivalent or higher than coastal ones. Finally, a POP solubility threshold (900 mg/L) was observed above which POPs would not be found in offshore waters, but only in sediments. This review highlights that studying POP accumulation away from their sources is fundamental for the diagnostic of long-lasting marine POPs contaminations. Further, POPs lipophilicity is a good predictor for offshore transport, and an indicator of interest for predicting sediment accumulation. Although POPs fate and transport in oceans is complex and require a finer analysis that this review could provide, the present work is a step forward identifying the hotspots in which POPs could be of particular concern, along with chemical indicators to predict for POPs accumulation in marine reservoirs.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Ecosistema , Sedimentos Geológicos , Agua de Mar , Contaminantes Químicos del Agua/análisis
20.
Mar Pollut Bull ; 174: 113249, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34953263

RESUMEN

Microplastics have been found in fish, but most studies have focused on the digestive system without considering additional organs. Herein, the objective was to assess the presence of microplastics in internal organs (gills, guts, kidney, heart) of the Atlantic horse mackerel (Trachurus trachurus) captured of the coast of Portugal (Northeast Atlantic Ocean). Suspected microplastics were present in all organs, with particles of larger size (i.e., equivalent diameter) found in the gut and those of lower size in the heart and its luminal blood. Suspected microplastics of 1-10 µm were the most abundant (65.4%), more likely to translocate, owing to their minute size, but more difficult to properly characterize. These results highlight the need to expand the analytical work on organs and tissues for assessing microplastics in organisms, but also emphasize the actual need for developing analytical methods that allow for an accurate isolation, identification, and characterization of microplastics in biota.


Asunto(s)
Perciformes , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Peces , Microplásticos , Plásticos , Portugal , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...