Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(1): 74-82, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38073521

RESUMEN

This study presents the development of a polyester microplate for detecting the S-protein of the SARS-CoV-2 virus in saliva and nasopharyngeal swab samples using direct enzyme-linked immunosorbent assay (ELISA) technology. The polyester microplate was designed to contain 96 zones with a 3 mm diameter each, and a volume of 2-3 µL. The experimental conditions including reagent concentration and reaction time were optimized. The microplate image was digitized and analyzed using graphical software. The linear range obtained between protein S concentrations and pixel intensity was 0-10 µg mL-1, with a correlation coefficient of 0.99 and a limit of detection of 0.44 µg mL-1. The developed methodology showed satisfactory intraplate and interplate repeatability with RSD values lower than 7.8%. The results achieved through immunoassay performed on polyester microplates were consistent with those of the RT-PCR method and showed a sensitivity of 100% and 90% and specificity of 85.71% and 100% for saliva and nasopharyngeal samples, respectively. The proposed direct immunoassay on polyester microplates emerges as an alternative to conventional immunoassays performed on commercial polystyrene plates, given the low cost of the device, low consumption of samples and reagents, lower waste generation, and shorter analysis time. Moreover, the immunoassay has shown great potential for diagnosing COVID-19 with precision and accuracy.


Asunto(s)
COVID-19 , Saliva , Humanos , Glicoproteína de la Espiga del Coronavirus , Colorimetría , COVID-19/diagnóstico , Inmunoensayo
2.
Anal Chim Acta ; 901: 59-67, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26614058

RESUMEN

Infrared (IR)-mediated thermal cycling system, a method proven to be a effective for sub-µL scale polymerase chain reaction (PCR) on microchips, has been integrated with DNA extraction and separation on a glass microchip in a fully integrated micro Total Analysis System by Easley et al., in 2006. IR-PCR has been demonstrated on both glass and PMMA microdevices where the fabrication (bonding) is not trivial. Polyester-toner (PeT) microfluidic devices have significant potential as cost-effective, disposable microdevices as a result of the ease of fabrication (∼$0.25 USD and <10 min per device) and availability of commercial substrates. For the first time, we demonstrate here the thermal cycling in PeT microchips on the IR-PCR system. Undesirable IR absorption by the black-toner bonding layer was eliminated with a spatial filter in the form of an aluminum foil mask. The solution heating rate for a black PeT microchip using a tungsten lamp was 10.1 ± 0.7 °C s(-1) with a cooling rate of roughly -12 ± 0.9 °C s(-1) assisted by forced air cooling. Dynamic surface passivation strategies allowed the successful amplification of a 520 bp fragment of the λ-phage genome (in 11 min) and a 1500 bp region of Azospirillum brasilense. Using a centrosymmetric chamber configuration in a multichamber PeT microchip, homogenous temperature distribution over all chambers was achieved with inter-chamber temperature differences at annealing, extension and denaturing steps of less than ±2 °C. The effectiveness of the multichamber system was demonstrated with the simultaneous amplification of a 390 bp amplicon of human ß-globin gene in five PeT PCR microchambers. The relative PCR amplification efficiency with a human ß-globin DNA fragment ranged from 70% to 90%, in comparison to conventional thermal cyclers, with an inter-chamber standard deviation of ∼10%. Development of PeT microchips for IR-PCR has the potential to provide rapid, low-volume amplification while also integrating PCR with extraction upstream and separation/detection downstream.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex/métodos , Poliésteres/química , Rayos Láser
3.
Nat Protoc ; 10(6): 875-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25974096

RESUMEN

We describe a technique for fabricating microfluidic devices with complex multilayer architectures using a laser printer, a CO2 laser cutter, an office laminator and common overhead transparencies as a printable substrate via a laser print, cut and laminate (PCL) methodology. The printer toner serves three functions: (i) it defines the microfluidic architecture, which is printed on the overhead transparencies; (ii) it acts as the adhesive agent for the bonding of multiple transparency layers; and (iii) it provides, in its unmodified state, printable, hydrophobic 'valves' for fluidic flow control. By using common graphics software, e.g., CorelDRAW or AutoCAD, the protocol produces microfluidic devices with a design-to-device time of ∼40 min. Devices of any shape can be generated for an array of multistep assays, with colorimetric detection of molecular species ranging from small molecules to proteins. Channels with varying depths can be formed using multiple transparency layers in which a CO2 laser is used to remove the polyester from the channel sections of the internal layers. The simplicity of the protocol, availability of the equipment and substrate and cost-effective nature of the process make microfluidic devices available to those who might benefit most from expedited, microscale chemistry.


Asunto(s)
Dispositivos Laboratorio en un Chip , Impresión , Láseres de Gas
4.
Analyst ; 137(11): 2692-8, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22545263

RESUMEN

Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.


Asunto(s)
ADN/análisis , Electroforesis por Microchip/métodos , Poliésteres/química , Celulosa/análogos & derivados , Celulosa/química , Electroforesis por Microchip/instrumentación
5.
Anal Chem ; 83(13): 5182-9, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21557576

RESUMEN

A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with ~270 µm, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 µL of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/µL (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of λ-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.


Asunto(s)
ADN/aislamiento & purificación , Miniaturización , Poliésteres/química , Reacción en Cadena de la Polimerasa/métodos , ADN/genética
6.
Analyst ; 135(3): 531-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20174706

RESUMEN

A novel solid phase extraction technique is described where DNA is bound and eluted from magnetic silica beads in a manner where efficiency is dependent on the magnetic manipulation of the beads and not on the flow of solution through a packed bed. The utility of this technique in the isolation of reasonably pure, PCR-amplifiable DNA from complex samples is shown by isolating DNA from whole human blood, and subsequently amplifying a fragment of the beta-globin gene. By effectively controlling the movement of the solid phase in the presence of a static sample, the issues associated with reproducibly packing a solid phase in a microchannel and maintaining consistent flow rates are eliminated. The technique described here is rapid, simple, and efficient, allowing for recovery of more than 60% of DNA from 0.6 microL of blood at a concentration which is suitable for PCR amplification. In addition, the technique presented here requires inexpensive, common laboratory equipment, making it easily adopted for both clinical point-of-care applications and on-site forensic sample analysis.


Asunto(s)
ADN/aislamiento & purificación , Dióxido de Silicio/química , Extracción en Fase Sólida/métodos , ADN/sangre , Genética Forense , Humanos , Magnetismo , Sistemas de Atención de Punto , Sonicación , Globinas beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...