Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209670

RESUMEN

The glycosaminoglycan, heparan sulphate (HS), orchestrates many developmental processes. Yet its biological role has not yet fully been elucidated. Small molecule chemical inhibitors can be used to perturb HS function and these compounds provide cheap alternatives to genetic manipulation methods. However, existing chemical inhibition methods for HS also interfere with chondroitin sulphate (CS), complicating data interpretation of HS function. Herein, a simple method for the selective inhibition of HS biosynthesis is described. Using endogenous metabolic sugar pathways, Ac4GalNAz produces UDP-GlcNAz, which can target HS synthesis. Cell treatment with Ac4GalNAz resulted in defective chain elongation of the polymer and decreased HS expression. Conversely, no adverse effect on CS production was observed. The inhibition was transient and dose-dependent, affording rescue of HS expression after removal of the unnatural azido sugar. The utility of inhibition is demonstrated in cell culture and in whole organisms, demonstrating that this small molecule can be used as a tool for HS inhibition in biological systems.


Asunto(s)
Vías Biosintéticas/efectos de los fármacos , Sulfatos de Condroitina/biosíntesis , Heparitina Sulfato/biosíntesis , Animales , Células CHO , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Sulfatos de Condroitina/química , Cricetulus , Descubrimiento de Drogas , Glicosaminoglicanos/biosíntesis , Heparitina Sulfato/química
2.
Biochem Soc Trans ; 48(5): 2347-2357, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33079166

RESUMEN

Xenopus tadpoles have emerged as a powerful in vivo model system to study mucociliary epithelia such as those found in the human airways. The tadpole skin has mucin-secreting cells, motile multi-ciliated cells, ionocytes (control local ionic homeostasis) and basal stem cells. This cellular architecture is very similar to the large airways of the human lungs and represents an easily accessible and experimentally tractable model system to explore the molecular details of mucociliary epithelia. Each of the cell types in the tadpole skin has a human equivalent and a conserved network of genes and signalling pathways for their differentiation has been discovered. Great insight into the function of each of the cell types has been achieved using the Xenopus model and this has enhanced our understanding of airway disease. This simple model has already had a profound impact on the field but, as molecular technologies (e.g. gene editing and live imaging) continue to develop apace, its use for understanding individual cell types and their interactions will likely increase. For example, its small size and genetic tractability make it an ideal model for live imaging of a mucociliary surface especially during environmental challenges such as infection. Further potential exists for the mimicking of human genetic mutations that directly cause airway disease and for the pre-screening of drugs against novel therapeutic targets.


Asunto(s)
Modelos Animales de Enfermedad , Larva/fisiología , Transducción de Señal , Xenopus/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Cilios , Fibrosis Quística/metabolismo , Biología Evolutiva , Epidermis , Epitelio , Redes Reguladoras de Genes , Glicómica , Homeostasis , Humanos , Microscopía Electrónica de Transmisión , Mucinas/metabolismo , Receptores Notch/metabolismo , Trastornos Respiratorios/metabolismo , Células Madre/metabolismo , Proteínas Wnt/metabolismo
3.
Nat Commun ; 10(1): 2344, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138806

RESUMEN

Infection by soil transmitted parasitic helminths, such as Trichuris spp, are ubiquitous in humans and animals but the mechanisms determining persistence of chronic infections are poorly understood. Here we show that p43, the single most abundant protein in T. muris excretions/secretions, is non-immunogenic during infection and has an unusual sequence and structure containing subdomain homology to thrombospondin type 1 and interleukin (IL)-13 receptor (R) α2. Binding of p43 to IL-13, the key effector cytokine responsible for T. muris expulsion, inhibits IL-13 function both in vitro and in vivo. Tethering of p43 to matrix proteoglycans presents a bound source of p43 to facilitate interaction with IL-13, which may underpin chronic intestinal infection. Our results suggest that exploiting the biology of p43 may open up new approaches to modulating IL-13 function and control of Trichuris infections.


Asunto(s)
Proteínas del Helminto/metabolismo , Interleucina-13/metabolismo , Parasitosis Intestinales/metabolismo , Proteoglicanos/metabolismo , Trichuris/metabolismo , Animales , Matriz Extracelular/metabolismo , Proteínas del Helminto/inmunología , Interleucina-13/inmunología , Subunidad alfa2 del Receptor de Interleucina-13/metabolismo , Parasitosis Intestinales/inmunología , Ratones , Homología de Secuencia de Aminoácido , Trombospondina 1/metabolismo , Tricuriasis
4.
Proc Natl Acad Sci U S A ; 115(4): 726-731, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311327

RESUMEN

Mucosal surfaces represent critical routes for entry and exit of pathogens. As such, animals have evolved strategies to combat infection at these sites, in particular the production of mucus to prevent attachment and to promote subsequent movement of the mucus/microbe away from the underlying epithelial surface. Using biochemical, biophysical, and infection studies, we have investigated the host protective properties of the skin mucus barrier of the Xenopus tropicalis tadpole. Specifically, we have characterized the major structural component of the barrier and shown that it is a mucin glycoprotein (Otogelin-like or Otogl) with similar sequence, domain organization, and structural properties to human gel-forming mucins. This mucin forms the structural basis of a surface barrier (∼6 µm thick), which is depleted through knockdown of Otogl. Crucially, Otogl knockdown leads to susceptibility to infection by the opportunistic pathogen Aeromonas hydrophila To more accurately reflect its structure, tissue localization, and function, we have renamed Otogl as Xenopus Skin Mucin, or MucXS. Our findings characterize an accessible and tractable model system to define mucus barrier function and host-microbe interactions.


Asunto(s)
Mucinas/metabolismo , Membrana Mucosa/metabolismo , Xenopus/metabolismo , Aeromonas/patogenicidad , Animales , Proteínas de la Membrana/metabolismo , Mucinas/fisiología , Membrana Mucosa/fisiología , Moco/metabolismo , Moco/fisiología , Piel/metabolismo , Xenopus/inmunología , Xenopus/fisiología , Proteínas de Xenopus/metabolismo
5.
Development ; 141(7): 1526-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598162

RESUMEN

The embryonic skin of Xenopus tadpoles serves as an experimental model system for mucociliary epithelia (MCE) such as the human airway epithelium. MCEs are characterized by the presence of mucus-secreting goblet and multiciliated cells (MCCs). A third cell type, ion-secreting cells (ISCs), is present in the larval skin as well. Synchronized beating of MCC cilia is required for directional transport of mucus. Here we describe a novel cell type in the Xenopus laevis larval epidermis, characterized by serotonin synthesis and secretion. It is termed small secretory cell (SSC). SSCs are detectable at early tadpole stages, unlike MCCs and ISCs, which are specified at early neurulation. Subcellularly, serotonin was found in large, apically localized vesicle-like structures, which were entirely shed into the surrounding medium. Pharmacological inhibition of serotonin synthesis decreased the velocity of cilia-driven fluid flow across the skin epithelium. This effect was mediated by serotonin type 3 receptor (Htr3), which was expressed in ciliated cells. Knockdown of Htr3 compromised flow velocity by reducing the ciliary motility of MCCs. SSCs thus represent a distinct and novel entity of the frog tadpole MCE, required for ciliary beating and mucus transport across the larval skin. The identification and characterization of SSCs consolidates the value of the Xenopus embryonic skin as a model system for human MCEs, which have been known for serotonin-dependent regulation of ciliary beat frequency.


Asunto(s)
Cilios/fisiología , Células Epidérmicas , Epidermis/metabolismo , Serotonina/metabolismo , Xenopus/crecimiento & desarrollo , Animales , Separación Celular , Embrión no Mamífero , Epidermis/embriología , Epidermis/crecimiento & desarrollo , Iones/metabolismo , Larva , Movimiento/fisiología , Moco/metabolismo , Receptores de Serotonina/fisiología
6.
Development ; 141(7): 1514-25, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24598166

RESUMEN

The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.


Asunto(s)
Epidermis/embriología , Epidermis/inmunología , Células Caliciformes/inmunología , Inmunidad Innata/fisiología , Xenopus/embriología , Xenopus/microbiología , Animales , Diferenciación Celular/fisiología , Cilios/inmunología , Embrión no Mamífero , Epidermis/metabolismo , Glicoproteínas/análisis , Glicoproteínas/metabolismo , Factor Nuclear 3-alfa del Hepatocito/fisiología , Iones/metabolismo , Larva , Moco/química , Moco/metabolismo , Vías Secretoras/inmunología , Vesículas Secretoras/inmunología , Vesículas Secretoras/metabolismo , Xenopus/inmunología
7.
Proc Natl Acad Sci U S A ; 110(27): 11029-34, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23776233

RESUMEN

Wound healing is essential for survival. We took advantage of the Xenopus embryo, which exhibits remarkable capacities to repair wounds quickly and efficiently, to investigate the mechanisms responsible for wound healing. Previous work has shown that injury triggers a rapid calcium response, followed by the activation of Ras homolog (Rho) family guanosine triphosphatases (GTPases), which regulate the formation and contraction of an F-actin purse string around the wound margin. How these processes are coordinated following wounding remained unclear. Here we show that inositol-trisphosphate 3-kinase B (Itpkb) via its enzymatic product inositol 1,3,4,5-tetrakisphosphate (InsP4) plays an essential role during wound healing by modulating the activity of Rho family GTPases and F-actin ring assembly. Furthermore, we show that Itpkb and InsP4 modulate the speed of the calcium wave, which propagates from the site of injury into neighboring uninjured cells. Strikingly, both overexpression of itpkb and exogenous application of InsP4 accelerate the speed of wound closure, a finding that has potential implications in our quest to find treatments that improve wound healing in patients with acute or chronic wounds.


Asunto(s)
Actinas/metabolismo , Calcio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Cicatrización de Heridas/fisiología , Proteínas de Xenopus/fisiología , Proteínas de Unión al GTP rho/metabolismo , Animales , Animales Modificados Genéticamente , Señalización del Calcio/fisiología , Ectodermo/embriología , Ectodermo/fisiología , Epidermis/embriología , Epidermis/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Fosfatos de Inositol/fisiología , Oocitos/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/fisiología
8.
Methods Mol Biol ; 917: 411-29, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956101

RESUMEN

Antibody-based detection of protein distribution patterns both in wholemount and on sections revolutionized Xenopus research and ushered in the visual-based era of Xenopus data presentation. The ability to view the distribution of a gene product throughout an embryo makes it possible to rapidly map normal expression profiles and profiles that have been altered by an experimental intervention. The main limiting element in Xenopus immunostaining techniques has always been the availability of antibodies that work well on fixed whole embryos, a problem that persists. However, new antibodies are constantly being generated and improvements in detection systems allow antibodies that were once below the limits of detection to be utilized in multichannel immunofluorescence using tyramide amplification.


Asunto(s)
Anticuerpos Monoclonales/química , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/aislamiento & purificación , Tampones (Química) , Embrión no Mamífero/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Inmunización , Microtomía , Datos de Secuencia Molecular , Fragmentos de Péptidos/inmunología , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Fijación del Tejido , Proteínas de Xenopus/inmunología , Proteínas de Xenopus/aislamiento & purificación
9.
Methods Mol Biol ; 917: 431-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22956102

RESUMEN

In situ hybridization involves the hybridization of an antisense RNA probe to an mRNA transcript and it is a powerful method for the characterization of gene expression in tissues, organs, or whole organisms. Performed as a whole mount (WISH), it allows the detection of mRNA transcripts in three dimensions, while combined with sectioning, either before or after hybridization, it provides gene expression information with cellular resolution. FISH relies on the fluorescence detection of probes and is the method of choice for the simultaneous detection of transcripts with similar or overlapping expression patterns, as each can be clearly distinguished by the selection of fluorophore. Here, we describe a protocol for performing multicolor FISH in Xenopus embryos in whole mounts and sections that can be further combined with antibody staining.


Asunto(s)
Embrión no Mamífero/metabolismo , Hibridación Fluorescente in Situ , ARN Mensajero/metabolismo , Xenopus/metabolismo , Animales , Fijadores/química , Colorantes Fluorescentes/química , Formaldehído/química , Sondas ARN/síntesis química , Sondas ARN/química , ARN Mensajero/genética , Fijación del Tejido , Transcriptoma , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
10.
Dis Model Mech ; 4(2): 179-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21183475

RESUMEN

Specialised epithelia such as mucociliary, secretory and transporting epithelia line all major organs, including the lung, gut and kidney. Malfunction of these epithelia is associated with many human diseases. The frog embryonic epidermis possesses mucus-secreting and multiciliated cells, and has served as an excellent model system for the biogenesis of cilia. However, ionic regulation is important for the function of all specialised epithelia and it is not clear how this is achieved in the embryonic frog epidermis. Here, we show that a third cell type develops alongside ciliated and mucus-secreting cells in the tadpole skin. These cells express high levels of ion channels and transporters; therefore, we suggest that they are analogous to ionocytes found in transporting epithelia such as the mammalian kidney. We show that frog ionocytes express the transcription factor foxi1e, which is required for the development of these cells. Depletion of ionocytes by foxi1e knockdown has detrimental effects on the development of multiciliated cells, which show fewer and aberrantly beating cilia. These results reveal a newly identified role for ionocytes and suggest that the frog embryonic skin is a model system that is particularly suited to studying the interactions of different cell types in mucociliary, as well as in secretory and transporting, epithelia.


Asunto(s)
Comunicación Celular , Cilios/patología , Embrión no Mamífero/patología , Epidermis/embriología , Modelos Biológicos , Moco/metabolismo , Xenopus/embriología , Animales , Cilios/metabolismo , Cilios/ultraestructura , Enfermedad , Embrión no Mamífero/metabolismo , Epidermis/patología , Epidermis/ultraestructura , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células Caliciformes/ultraestructura , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...