Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Therm Anal Calorim ; 147(18): 10083-10088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813001

RESUMEN

In the manuscripts dealing with thermoanalytical kinetics, many flaws, mistakes, and misconceptions are encountered repeatedly. In this paper, frequent flaws encountered in manuscript of kinetic papers are reviewed, mainly those originating in the false interpretation of the general rate equation, improper employment of integral isoconversional methods, conclusions drawn from the values of a single kinetic parameter, absence of error estimation and application of single-heating rate methods. Assessment of the quality of kinetic treatment is also noticed. Some experimental imperfections that could lead to incorrect values of kinetic parameters are mentioned.

2.
J Therm Anal Calorim ; 147(22): 12489-12494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845985

RESUMEN

In this work, a novel procedure for fast assessment of the material residual stability is proposed. The method resides in integral isoconversional kinetic analysis of the thermal oxidation of unaged material employing the Berthelot-Hood temperature function. Subsequently, the obtained conversion-independent kinetic parameter D is also employed for samples aged in various regimes. The value of conversion-dependent parameter A for aged samples is calculated from the oxidation onset temperature measured at 5 °C min-1. The residual stabilities are then calculated as a simple ratio of the parameter A of aged material to that of the unaged one. The method has been applied and verified for the samples of low-density polyethylene aged by thermal, radiation and combined ageing. The method can also be employed for high-throughput screening of the effect of various stabilizers and antioxidants in a given organic matrix.

3.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159859

RESUMEN

Data suitable for assembling a physiologically-based pharmacokinetic (PBPK) model for nanoparticles (NPs) remain relatively scarce. Therefore, there is a trend in extrapolating the results of in vitro and in silico studies to in vivo nanoparticle hazard and risk assessment. To evaluate the reliability of such approach, a pharmacokinetic study was performed using the same polyethylene glycol-coated gold nanoparticles (PEG-AuNPs) in vitro and in vivo. As in vitro models, human cell lines TH1, A549, Hep G2, and 16HBE were employed. The in vivo PEG-AuNP biodistribution was assessed in rats. The internalization and exclusion of PEG-AuNPs in vitro were modeled as first-order rate processes with the partition coefficient describing the equilibrium distribution. The pharmacokinetic parameters were obtained by fitting the model to the in vitro data and subsequently used for PBPK simulation in vivo. Notable differences were observed in the internalized amount of Au in individual cell lines compared to the corresponding tissues in vivo, with the highest found for renal TH1 cells and kidneys. The main reason for these discrepancies is the absence of natural barriers in the in vitro conditions. Therefore, caution should be exercised when extrapolating in vitro data to predict the in vivo NP burden and response to exposure.

4.
Toxicol Rep ; 8: 1869-1876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34849352

RESUMEN

Plastic ingestion by various organisms within different trophic levels, including humans, is becoming a serious problem worldwide. Plastic waste samples are often found concentrated in an organism's digestive tract and can be degraded and further translocate to the surrounding tissue or circulatory systems and accumulate in food chains. In the present work, we report a detailed chemical analysis and degradation state evaluation of a relatively large piece of plastic waste found in the gastrointestinal tract of a Wels catfish (Silurus glanis L.) caught in the Bodrog River (Danube River basin), eastern Slovakia. Chemical analysis by surface-sensitive X-ray photoelectron spectroscopy (XPS) was performed to identify the surface composition of the digested plastic piece. Micro-Fourier transform infrared (µFTIR) spectroscopy showed that the plastic waste was oxidized low-density polyethylene (LDPE), with some nylon fibers adhered on the surface. Glyceraldehyde adhered onto LDPE was also detected, which might come from the carbohydrate metabolism of that fish. A morphology study by digital optical microscopy indicated solid inorganic particles attached to the surface of LDPE. A degradation study by differential scanning calorimetry (DSC) showed considerable oxidation of LDPE, leading to fragmentation and disintegration of the plastic waste material.

5.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203551

RESUMEN

Despite the obvious advantages of gold nanoparticles for biomedical applications, controversial and incomplete toxicological data hamper their widespread use. Here, we present the results from an in vivo toxicity study using gold nanoparticles coated with polyethylene glycol (PEG-AuNPs). The pharmacokinetics and biodistribution of PEG-AuNPs were examined in the rat's liver, lung, spleen, and kidney after a single i.v. injection (0.7 mg/kg) at different time intervals. PEG-AuNPs had a relatively long blood circulation time and accumulated primarily in the liver and spleen, where they remained for up to 28 days after administration. Increased cytoplasmic vacuolation in hepatocytes 24 h and 7 days after PEG-AuNPs exposure and apoptotic-like cells in white splenic pulp 24 h after administration has been detected, however, 28 days post-exposure were no longer observed. In contrast, at this time point, we identified significant changes in lipid metabolism, altered levels of liver injury markers, and elevated monocyte count, but without marked biological relevance. In blood cells, no DNA damage was present in any of the studied time intervals, with the exception of DNA breakage transiently detected in primary kidney cells 4 h post-injection. Our results indicate that the tissue accumulation of PEG-AuNPs might result in late toxic effects.

6.
Small ; 17(15): e2006012, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33458959

RESUMEN

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.


Asunto(s)
Técnicas Analíticas Microfluídicas , Preparaciones Farmacéuticas , Animales , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Dispositivos Laboratorio en un Chip , Microfluídica
7.
Dalton Trans ; 49(48): 17786-17795, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33283829

RESUMEN

Two tridentate ligands (L1 = 2,6-bis(1-(3,5-di-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine and L2 = 2,6-bis(1-(4-tert-butylbenzyl)-1H-benzimidazol-2-yl)pyridine) and one didentate ligand (L3 = 1-(4-tert-butylbenzyl)-2-pyridine-2-yl-1H-benzimidazol) were used for the synthesis of eight mononuclear Fe(ii) compounds 1-8 containing miscellaneous counterions. Single-crystal X-ray diffraction analysis confirmed the expected molecular structures of all the reported coordination compounds and revealed the octahedral geometry of metal centres in the complex dications of 1-8. Compounds 1-6 prepared from tridentate ligands were low-spin and, therefore, diamagnetic up to 400 K. On the other hand, compounds 7 and 8, in which the Fe(ii) centre was coordinated with didentate ligand L3, exhibited temperature and light triggered spin-crossover behaviour. The theoretical calculations supported the experimental magnetic investigation and helped to explain the electronic structures of the reported complexes with respect to the occurrence of thermal and light induced spin state switching. In addition, the solution redox properties of compounds 1-8 were investigated by cyclic voltammetry.

8.
Eur J Pharm Sci ; 129: 132-139, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625367

RESUMEN

Novel polysaccharide hydrogels based on Methocel and beta-glucan or arabinogalactan and corresponding xerogels were prepared and described. Phase stability of hydrogels was confirmed over multiple freeze-thaw cycles. Binary beta-glucan:Methocel hydrogels showed the highest freeze-thaw stability in terms of their syneresis. The viscosity of binary hydrogels was further increased by adding water-soluble resin. Freeze drying of polysaccharide gels yields xerogels suitable as abuse-deterrent vehicles for opioid delivery. The xerogels were characterized by infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and by their swelling behavior. As a model opioid, tramadol hydrochloride formulations were prepared with various xerogel matrices and dissolution-release profiles were determined. The xerogel matrix acts as a functional excipient that forms a viscous gel barrier with decreased rate of tramadol release. Moreover, slower drug release with no dose dumping is observed in the presence of ethanol. The release kinetics demonstrated that hydrophilic gels with beta-glucan or arabinogalactan are effective for controlling and prolonging the drug release for 12 h which could reduce the required number of administrations.


Asunto(s)
Analgésicos Opioides/química , Galactanos/química , Hidrogeles/química , beta-Glucanos/química , Química Farmacéutica/métodos , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Liberación de Fármacos , Excipientes/química , Liofilización/métodos , Congelación , Cinética , Polisacáridos/química , Viscosidad , Agua/química
9.
J Comput Chem ; 36(6): 392-8, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25523237

RESUMEN

The parameters obtained from a kinetic analysis of thermoanalytical data often exhibit a conversion-dependent behavior. A novel incremental isoconversional method able to deal with this phenomenon is proposed. The kinetic model is directly fitted to the experimental data using nonlinear orthogonal least squares procedure. The data are processed without transformations, so their error distribution is preserved. As the objective function is based on a maximum likelihood approach, reliable uncertainties of the parameters can be estimated. In contrast to other methods, the activation energy and the pre-exponential factor are treated as equally important kinetic parameters and are estimated simultaneously. Validity of the method is verified on simulated data, including a dataset with local nonlinearity in the temperature variation. A practical application on the nonisothermal cold crystallization of polyethylene terephthalate is presented.

10.
Food Chem ; 150: 296-300, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24360453

RESUMEN

Papaver somniferum L. is an important crop cultivated mostly for seed production. Poppy seeds have a high nutritive value and are used as a food and as a source of edible oil. This oil is a rich source of polyunsaturated fatty acids. It is well known that the unsaturated fatty acids easily undergo oxidation reactions, which lead to the reduction of shelf life, nutritional quality, development of unpleasant tastes and odors. The goal of this study was to develop the methodology for testing the stability of poppy seeds using non-isothermal DSC. For the treatment of the experimental data a method based on non-Arrhenian temperature function has been applied and the values the kinetic parameters have been obtained. In order to assess the durability of the commercial poppy seeds, the lengths of induction periods have been calculated.


Asunto(s)
Rastreo Diferencial de Calorimetría/métodos , Papaver/química , Semillas/química , Culinaria , Calor , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...