Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 1132: 345-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24599865

RESUMEN

The biotechnological potential of plastid genetic engineering has been illustrated in a limited number of higher plant species. We have developed a reproducible method to generate plastid transformants in soybean (Glycine max), a crop of major agronomic importance. The transformation vectors are delivered to embryogenic cultures by the particle gun method and selection performed using the aadA antibiotic resistance gene. Homoplasmy is established rapidly in the selected events without the need for further selection or regeneration cycles, and genes of interest can be expressed at a high level in green tissues. This is a significant step toward the commercial application of this technology.


Asunto(s)
Biolística/métodos , Cloroplastos/genética , Glycine max/genética , Antibacterianos/farmacología , ADN Ribosómico/genética , Resistencia a Medicamentos/genética , Nucleotidiltransferasas/genética , Complejo de Proteína del Fotosistema II/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , ARN Ribosómico 16S/genética , Semillas/genética , Espectinomicina/farmacología , Transformación Genética , Transgenes/genética
2.
Plant Physiol ; 150(3): 1474-81, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19458113

RESUMEN

Genetically engineered chloroplasts have an extraordinary capacity to accumulate recombinant proteins. We have investigated in tobacco (Nicotiana tabacum) the possible consequences of such additional products on several parameters of plant development and composition. Plastid transformants were analyzed that express abundantly either bacterial enzymes, alkaline phosphatase (PhoA-S and PhoA-L) and 4-hydroxyphenyl pyruvate dioxygenase (HPPD), or a green fluorescent protein (GFP). In leaves, the HPPD and GFP recombinant proteins are the major polypeptides and accumulate to higher levels than Rubisco. Nevertheless, these engineered metabolic sinks do not cause a measurable difference in growth rate or photosynthetic parameters. The total amino acid content of transgenic leaves is also not significantly affected, showing that plant cells have a limited protein biosynthetic capacity. Recombinant products are made at the expense of resident proteins. Rubisco, which constitutes the major leaf amino acid store, is the most clearly and strongly down-regulated plant protein. This reduction is even more dramatic under conditions of limited nitrogen supply, whereas recombinant proteins accumulate to even higher relative levels. These changes are regulated posttranscriptionally since transcript levels of resident plastid genes are not affected. Our results show that plants are able to produce massive amounts of recombinant proteins in chloroplasts without profound metabolic perturbation and that Rubisco, acting as a nitrogen buffer, is a key player in maintaining homeostasis and limiting pleiotropic effects.


Asunto(s)
Adaptación Fisiológica , Cloroplastos/metabolismo , Nicotiana/genética , Proteínas Recombinantes/metabolismo , Aminoácidos/metabolismo , Cloroplastos/genética , Vectores Genéticos , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Nitrógeno/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/crecimiento & desarrollo , Nicotiana/metabolismo
3.
Methods Mol Biol ; 483: 209-21, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19183901

RESUMEN

Over the last decade, plant-based production of pharmaceuticals has made remarkable progress as the expression of a diverse set of proteins has been demonstrated in a range of plant crops. Although the commercial exploitation is still pending, today various plant-based expression technologies have reached significant milestones through clinical testing in humans. Each of the protein manufacturing platforms in plants has specific benefits and drawbacks. We have engaged in comparing some of these production systems with respect to their performance: protein yield and quality. Using a specific tester protein (aprotinin), it was shown that functional aprotinin can be manufactured in plants in substantial amounts, as illustrated in this chapter.


Asunto(s)
Aprotinina/biosíntesis , Nicotiana/genética , Preparaciones Farmacéuticas , Plantas Modificadas Genéticamente/genética , Secuencia de Aminoácidos , Aprotinina/química , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Transgenes
4.
Plant Biotechnol J ; 6(3): 309-20, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18266824

RESUMEN

Aprotinin, a bovine protease inhibitor of important therapeutic value, was expressed in tobacco plastid transformants. This disulphide bond-containing protein was targeted to the lumen of thylakoids using signal peptides derived from nuclear genes which encode lumenal proteins. Translocation was attempted via either the general secretion (Sec) or the twin-arginine translocation (Tat) pathway. In both cases, this strategy allowed the production of genuine aprotinin with its N-terminal arginine residue. The recombinant protease inhibitor was efficiently secreted within the lumen of thylakoids, accumulated in older leaves and was bound to trypsin, suggesting that the three disulphide bonds of aprotinin are correctly folded and paired in this chloroplast compartment. Mass spectrometric analysis indicated that translocation via the Sec pathway, unlike the Tat pathway, led predominantly to an oxidized protein. Translocation via the Tat pathway was linked to a slightly decreased growth rate, a pale-green leaf phenotype and supplementary expression products associated with the thylakoids.


Asunto(s)
Aprotinina/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Nicotiana/citología , Nicotiana/genética , Inhibidores de Proteasas/metabolismo , Secuencia de Aminoácidos , Aprotinina/genética , Regulación de la Expresión Génica de las Plantas/genética , Ingeniería Genética , Hojas de la Planta/citología , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Recombinantes , Tilacoides
5.
Plant Biotechnol J ; 6(1): 46-61, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17944820

RESUMEN

Plant chloroplasts are promising vehicles for recombinant protein production, but the process of protein folding in these organelles is not well understood in comparison with that in prokaryotic systems, such as Escherichia coli. This is particularly true for disulphide bond formation which is crucial for the biological activity of many therapeutic proteins. We have investigated the capacity of tobacco (Nicotiana tabacum) chloroplasts to efficiently form disulphide bonds in proteins by expressing in this plant cell organelle a well-known bacterial enzyme, alkaline phosphatase, whose activity and stability strictly depend on the correct formation of two intramolecular disulphide bonds. Plastid transformants have been generated that express either the mature enzyme, localized in the stroma, or the full-length coding region, including its signal peptide. The latter has the potential to direct the recombinant alkaline phosphatase into the lumen of thylakoids, giving access to this even less well-characterized organellar compartment. We show that the chloroplast stroma supports the formation of an active enzyme, unlike a normal bacterial cytosol. Sorting of alkaline phosphatase to the thylakoid lumen occurs in the plastid transformants translating the full-length coding region, and leads to larger amounts and more active enzyme. These results are compared with those obtained in bacteria. The implications of these findings on protein folding properties and competency of chloroplasts for disulphide bond formation are discussed.


Asunto(s)
Cloroplastos/metabolismo , Disulfuros/metabolismo , Nicotiana/metabolismo , Señales de Clasificación de Proteína/fisiología , Proteínas Recombinantes/metabolismo , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos , Plantas Modificadas Genéticamente/metabolismo , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/genética , Nicotiana/genética , Transformación Genética
6.
Plant Biotechnol J ; 5(1): 118-33, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17207262

RESUMEN

Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is part of the biosynthetic pathway leading to plastoquinone and vitamin E. This enzyme is also the molecular target of various new bleaching herbicides for which genetically engineered tolerant crops are being developed. We have expressed a sensitive bacterial hppd gene from Pseudomonas fluorescens in plastid transformants of tobacco and soybean and characterized in detail the recombinant lines. HPPD accumulates to approximately 5% of total soluble protein in transgenic chloroplasts of both species. As a result, the soybean and tobacco plastid transformants acquire a strong herbicide tolerance, performing better than nuclear transformants. In contrast, the over-expression of HPPD has no significant impact on the vitamin E content of leaves or seeds, quantitatively or qualitatively. A new strategy is presented and exemplified in tobacco which allows the rapid generation of antibiotic marker-free plastid transformants containing the herbicide tolerance gene only. This work reports, for the first time, the plastome engineering for herbicide tolerance in a major agronomic crop, and a technology leading to marker-free lines for this trait.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa/genética , Glycine max/genética , Herbicidas/toxicidad , Nicotiana/genética , Plastidios/genética , Pseudomonas fluorescens/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tolerancia a Medicamentos/genética , Pseudomonas fluorescens/enzimología , Proteínas Recombinantes/metabolismo , Nicotiana/efectos de los fármacos
7.
Transgenic Res ; 15(3): 305-11, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16779646

RESUMEN

The stability of a plastid transgene has been evaluated in soybean transformants over six generations. These transformants had integrated the aadA selection cassette in the intergenic region between the rps12/7 and trnV genes. Three independent homoplasmic T0 transformation events were selected and ten plants from each event propagated to generation T5 in the absence of selection pressure. No transgene rearrangement nor wild-type plastome were detected in generation T5 by Southern blot analysis. All tested progenies were uniformly resistant to spectinomycin. Therefore, soybean transformants of generations T0 and T5 appear to be genetically and phenotypically identical.


Asunto(s)
Técnicas Genéticas , Glycine max/genética , Plantas Modificadas Genéticamente , Plastidios/genética , Proteínas Recombinantes/química , Agar/química , ADN/metabolismo , ADN Intergénico/genética , Resistencia a Medicamentos , Vectores Genéticos , Genotipo , Modelos Genéticos , Fenotipo , Plastidios/metabolismo , Espectinomicina/farmacología , Factores de Tiempo
8.
Plant Physiol ; 134(1): 92-100, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14684842

RESUMEN

Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants.


Asunto(s)
Nicotiana/genética , Nicotiana/metabolismo , Ácido Shikímico/metabolismo , Tocotrienoles/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Arabidopsis/enzimología , Arabidopsis/genética , Secuencia de Bases , ADN Recombinante/genética , Resistencia a Medicamentos/genética , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Genes Fúngicos , Genes de Plantas , Ingeniería Genética , Herbicidas/farmacología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Prefenato Deshidrogenasa/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Vitamina E/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...