Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JAMA Netw Open ; 6(3): e231723, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877518

RESUMEN

Background: Patients with cancer seen in rural and underserved areas disproportionately face barriers to access genetic services. Genetic testing is critical to inform treatment decisions, for early detection of another cancer, and to identify at-risk family members who may benefit from screening and prevention. Objective: To examine medical oncologists' genetic testing ordering trends for patients with cancer. Design, Setting, and Participants: This prospective quality improvement study was performed in 2 phases over 6 months between August 1, 2020, and January 31, 2021, at a community network hospital. Phase 1 focused on observation of clinic processes. Phase 2 incorporated peer coaching from cancer genetics experts for medical oncologists at the community network hospital. The follow-up period lasted 9 months. Main Outcomes and Measures: The number of genetic tests ordered was compared between phases. Results: The study included 634 patients (mean [SD] age, 71.0 [10.8] years [range, 39-90 years]; 409 women [64.5%]; 585 White [92.3%]); 353 (55.7%) had breast cancer, 184 (29.0%) had prostate cancer, and 218 (34.4%) had a family history of cancer. Of the 634 patients with cancer, 29 of 415 (7.0%) received genetic testing in phase 1, and 25 of 219 (11.4%) received genetic testing in phase 2. Of the 29 patients who received testing in phase 1, 20 (69.0%) had germline genetic testing; 23 of 25 patients (92.0%) had germline genetic testing in phase 2. Uptake of germline genetic testing increased by 23.0% between phases, but the difference was not statistically significant (P = .06). Uptake of germline genetic testing was highest among patients with pancreatic cancer (4 of 19 [21.1%]) and ovarian cancer (6 of 35 [17.1%]); the National Comprehensive Cancer Network (NCCN) recommends offering genetic testing to all patients with pancreatic cancer and ovarian cancer. Conclusions and Relevance: This study suggests that peer coaching from cancer genetics experts was associated with an increase in ordering of genetic testing by medical oncologists. Efforts made to (1) standardize gathering of personal and family history of cancer, (2) review biomarker data suggestive of a hereditary cancer syndrome, (3) facilitate ordering tumor and/or germline genetic testing every time NCCN criteria are met, (4) encourage data sharing between institutions, and (5) advocate for universal coverage for genetic testing may help realize the benefits associated with precision oncology for patients and their families seeking care at community cancer centers.


Asunto(s)
Tutoría , Neoplasias Ováricas , Neoplasias Pancreáticas , Médicos , Masculino , Humanos , Femenino , Anciano , Redes Comunitarias , Estudios Prospectivos , Medicina de Precisión , Servicios Genéticos , Hospitales Comunitarios
3.
Ann Surg Oncol ; 30(3): 1312-1326, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36335273

RESUMEN

BACKGROUND: The National Comprehensive Cancer Network recommends genetic testing in patients with potentially hereditary breast, ovarian, pancreatic, and prostate cancers (HBOPP). Knowledge of genetic mutations impacts decisions about screening and treatment. METHODS: A retrospective cohort study of 28,586 HBOPP patients diagnosed from 2013 to 2019 was conducted using a linked administrative-cancer database in the Seattle-Puget Sound SEER area. Guideline-concordant testing (GCT) was assessed annually according to guideline updates. Frequency of testing according to patient/cancer characteristics was evaluated using chi-squared tests, and factors associated with receipt of genetic testing were identified using multivariable logistic regression. RESULTS: Testing occurred in 17% of HBOPP patients, increasing from 9% in 2013 to 21% in 2019 (p < 0.001). Ovarian cancer had the highest testing (40%) and prostate cancer the lowest (4%). Age < 50, female sex, non-Hispanic White race, commercial insurance, urban location, family history of HBOPP, and triple negative breast cancer (TNBC) were associated with increased testing (all p < 0.05). GCT increased from 38% in 2013 to 44% in 2019, and was highest for early age at breast cancer diagnosis, TNBC, male breast cancer, and breast cancer with family history of HBOPP (all > 70% in 2019), and lowest for metastatic prostate cancer (6%). CONCLUSIONS: The frequency of genetic testing for HBOPP cancer has increased over time. Though GCT is high for breast cancer, there are gaps in concordance among patients with other cancers. Increasing provider and patient education, genetic counseling, and insurance coverage for testing among HBOPP patients may improve guideline adherence.


Asunto(s)
Neoplasias de la Mama , Pruebas Genéticas , Neoplasias Ováricas , Neoplasias Pancreáticas , Neoplasias de la Próstata , Femenino , Humanos , Masculino , Neoplasias de la Mama/genética , Asesoramiento Genético , Neoplasias Ováricas/genética , Hormonas Pancreáticas , Neoplasias de la Próstata/genética , Estudios Retrospectivos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias Pancreáticas/genética
4.
Cancer Epidemiol Biomarkers Prev ; 31(2): 362-371, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34810208

RESUMEN

BACKGROUND: Cancer survivors are developing more subsequent tumors. We sought to characterize patients with multiple (≥2) primary cancers (MPC) to assess associations and genetic mechanisms. METHODS: Patients were prospectively consented (01/2013-02/2019) to tumor-normal sequencing via a custom targeted panel (MSK-IMPACT). A subset consented to return of results of ≥76 cancer predisposition genes. International Agency for Research on Cancer (IARC) 2004 rules for defining MPC were applied. Tumor pairs were created to assess relationships between cancers. Age-adjusted, sex-specific, standardized incidence ratios (SIR) for first to second cancer event combinations were calculated using SEER rates, adjusting for confounders and time of ascertainment. Associations were made with germline and somatic variants. RESULTS: Of 24,241 patients, 4,340 had MPC (18%); 20% were synchronous. Most (80%) had two primaries; however, 4% had ≥4 cancers. SIR analysis found lymphoma-lung, lymphoma-uterine, breast-brain, and melanoma-lung pairs in women and prostate-mesothelioma, prostate-sarcoma, melanoma-stomach, and prostate-brain pairs in men in excess of expected after accounting for synchronous tumors, known inherited cancer syndromes, and environmental exposures. Of 1,580 (36%) patients who received germline results, 324 (21%) had 361 pathogenic/likely pathogenic variants (PV), 159 (44%) in high penetrance genes. Of tumor samples analyzed, 55% exhibited loss of heterozygosity at the germline variant. In those with negative germline findings, melanoma, prostate, and breast cancers were common. CONCLUSIONS: We identified tumor pairs without known predisposing mutations that merit confirmation and will require novel strategies to elucidate genetic mechanisms of shared susceptibilities. IMPACT: If verified, patients with MPC with novel phenotypes may benefit from targeted cancer surveillance.


Asunto(s)
Melanoma , Neoplasias Primarias Múltiples , Neoplasias Primarias Secundarias , Neoplasias de la Próstata , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Masculino , Melanoma/epidemiología , Melanoma/genética , Neoplasias Primarias Múltiples/epidemiología , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Secundarias/epidemiología , Neoplasias Primarias Secundarias/genética , Neoplasias de la Próstata/genética
5.
Eur Urol ; 81(3): 243-250, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34863587

RESUMEN

BACKGROUND: Inherited germline TP53 pathogenic and likely pathogenic variants (gTP53) cause autosomal dominant multicancer predisposition including Li-Fraumeni syndrome (LFS). However, there is no known association of prostate cancer with gTP53. OBJECTIVE: To determine whether gTP53 predisposes to prostate cancer. DESIGN, SETTING, AND PARTICIPANTS: This multi-institutional retrospective study characterizes prostate cancer incidence in a cohort of LFS males and gTP53 prevalence in a prostate cancer cohort. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We evaluated the spectrum of gTP53 variants and clinical features associated with prostate cancer. RESULTS AND LIMITATIONS: We identified 31 prostate cancer cases among 163 adult LFS males, including 26 of 54 aged ≥50 yr. Among 117 LFS males without prostate cancer at the time of genetic testing, six were diagnosed with prostate cancer over a median (interquartile range [IQR]) of 3.0 (1.3-7.2) yr of follow-up, a 25-fold increased risk (95% confidence interval [CI] 9.2-55; p < 0.0001). We identified gTP53 in 38 of 6850 males (0.6%) in the prostate cancer cohort, a relative risk 9.1-fold higher than that of population controls (95% CI 6.2-14; p < 0.0001; gnomAD). We observed hotspots at the sites of attenuated variants not associated with classic LFS. Two-thirds of available gTP53 prostate tumors had somatic inactivation of the second TP53 allele. Among gTP53 prostate cancer cases in this study, the median age at diagnosis was 56 (IQR: 51-62) yr, 44% had Gleason ≥8 tumors, and 29% had advanced disease at diagnosis. CONCLUSIONS: Complementary analyses of prostate cancer incidence in LFS males and gTP53 prevalence in prostate cancer cohorts suggest that gTP53 predisposes to aggressive prostate cancer. Prostate cancer should be considered as part of LFS screening protocols and TP53 considered in germline prostate cancer susceptibility testing. PATIENT SUMMARY: Inherited pathogenic variants in the TP53 gene are likely to predispose men to aggressive prostate cancer.


Asunto(s)
Síndrome de Li-Fraumeni , Neoplasias de la Próstata , Adulto , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Síndrome de Li-Fraumeni/epidemiología , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/patología , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/genética , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/genética
6.
Cancer ; 126(13): 3114-3121, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320050

RESUMEN

BACKGROUND: Constitutional or somatic mosaic epimutations are increasingly recognized as a mechanism of gene dysregulation resulting in cancer susceptibility. Beckwith-Wiedemann syndrome is the cancer predisposition syndrome most commonly associated with epimutation and is extremely variable in its phenotypic presentation, which can include isolated tumors. Because to the authors' knowledge large-scale germline DNA sequencing studies have not included methylation analysis, the percentage of pediatric cancer predisposition that is due to epimutations is unknown. METHODS: Germline methylation testing at the 11p15.5 locus was performed in blood for 24 consecutive patients presenting with hepatoblastoma (3 patients) or Wilms tumor (21 patients). RESULTS: Six individuals with Wilms tumor and 1 patient with hepatoblastoma were found to have low-level gain of methylation at imprinting control 1, and a child with hepatoblastoma was found to have loss of methylation at imprinting control 2. The loss of methylation at imprinting control 2 was found to be maternally inherited, despite not being associated with any detectable genomic alteration. CONCLUSIONS: Overall, 33% of patients (8 of 24 patients) with Wilms tumor or hepatoblastoma were found to have an epigenetic susceptibility that was detectable in the blood. It is interesting to note that low-level gain of methylation at imprinting control 1 predominantly was detected in females with bilateral Wilms tumors. Further studies in larger cohorts are needed to determine the efficacy of testing all patients with Wilms tumor or hepatoblastoma for 11p15.5 epimutations in the blood as part of DNA analysis because this hallmark of predisposition will not be detected by sequencing-based approaches and detecting a cancer predisposition may modify treatment.


Asunto(s)
Síndrome de Beckwith-Wiedemann/sangre , Metilación de ADN/genética , Impresión Genómica/genética , Hepatoblastoma/sangre , Tumor de Wilms/sangre , Adolescente , Adulto , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Niño , Preescolar , Cromosomas Humanos Par 11/genética , Femenino , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Hepatoblastoma/genética , Hepatoblastoma/patología , Humanos , Lactante , Masculino , Proteínas de Neoplasias/genética , Tumor de Wilms/genética , Tumor de Wilms/patología , Adulto Joven
7.
J Clin Oncol ; 37(4): 286-295, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30376427

RESUMEN

PURPOSE: Microsatellite instability (MSI) and/or mismatch repair deficiency (MMR-D) testing has traditionally been performed in patients with colorectal (CRC) and endometrial cancer (EC) to screen for Lynch syndrome (LS)-associated cancer predisposition. The recent success of immunotherapy in high-frequency MSI (MSI-H) and/or MMR-D tumors now supports testing for MSI in all advanced solid tumors. The extent to which LS accounts for MSI-H across heterogeneous tumor types is unknown. Here, we establish the prevalence of LS across solid tumors according to MSI status. METHODS: MSI status was determined using targeted next-generation sequencing, with tumors classified as MSI-H, MSI-indeterminate, or microsatellite-stable. Matched germline DNA was analyzed for mutations in LS-associated mismatch repair genes ( MLH1, MSH2, MSH6, PMS2, EPCAM). In patients with LS with MSI-H/I tumors, immunohistochemical staining for MMR-D was assessed. RESULTS: Among 15,045 unique patients (more than 50 cancer types), LS was identified in 16.3% (53 of 326), 1.9% (13 of 699), and 0.3% (37 of 14,020) of patients with MSI-H, MSI-indeterminate, and microsatellite-stable tumors, respectively ( P < .001). Among patients with LS with MSI-H/I tumors, 50% (33 of 66) had tumors other than CRC/EC, including urothelial, prostate, pancreas, adrenocortical, small bowel, sarcoma, mesothelioma, melanoma, gastric, and germ cell tumors. In these patients with non-CRC/EC tumors, 45% (15 of 33) did not meet LS genetic testing criteria on the basis of personal/family history. Immunohistochemical staining of LS-positive MSI-H/I tumors demonstrated MMR-D in 98.2% (56 of 57) of available cases. CONCLUSION: MSI-H/MMR-D is predictive of LS across a much broader tumor spectrum than currently appreciated. Given implications for cancer surveillance and prevention measures in affected families, these data support germline genetic assessment for LS for patients with an MSI-H/MMR-D tumor, regardless of cancer type or family cancer history.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Mutación , Neoplasias Colorrectales Hereditarias sin Poliposis/epidemiología , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Ciudad de Nueva York/epidemiología , Fenotipo , Prevalencia , Estudios Prospectivos , Transcriptoma
8.
Artículo en Inglés | MEDLINE | ID: mdl-30068732

RESUMEN

Mutations in succinate dehydrogenase complex genes predispose to familial paraganglioma-pheochromocytoma syndrome (FPG) and gastrointestinal stromal tumors (GIST). Here we describe cancer patients undergoing agnostic germline testing at Memorial Sloan Kettering Cancer Center and found to harbor germline SDHA mutations. Using targeted sequencing covering the cancer census genes, we identified 10 patients with SDHA germline mutations. Cancer diagnoses for these patients carrying SDHA germline mutations included neuroblastoma (n = 1), breast (n = 1), colon (n = 1), renal (n = 1), melanoma and uterine (n = 1), prostate (n = 1), endometrial (n = 1), bladder (n = 1), and gastrointestinal stromal tumor (GIST) (n = 2). Immunohistochemical staining and assessment of patient tumors for second hits and loss of heterozygosity in SDHA confirmed GIST as an SDHA-associated tumor and suggests SDHA germline mutations may be a driver in neuroblastoma tumorigenesis.


Asunto(s)
Complejo II de Transporte de Electrones/genética , Mutación de Línea Germinal , Neoplasias/genética , Adolescente , Adulto , Línea Celular Tumoral , Niño , Preescolar , Femenino , Frecuencia de los Genes , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...