Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1865(6): 184178, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225030

RESUMEN

Steroids are also known to induce immediate physiological and cellular response which occurs within minutes to seconds, or even faster. Such non-genomic actions of steroids are rapid and are proposed to be mediated by different ion channels. Transient receptor potential vanilloid sub-type 4 (TRPV4), is a non-specific polymodal ion channel which is involved in several physiological and cellular processes. In this work, we explored the possibilities of Progesterone (P4) as an endogenous ligand for TRPV4. We demonstrate that P4 docks as well as physically interacts with the TM4-loop-TM5 region of TRPV4, a region which is a mutational hotspot for different diseases. Live cell imaging experiments with a genetically encoded Ca2+-sensor suggests that P4 causes quick influx of Ca2+ specifically in the TRPV4 expressing cells, which can be partially blocked by TRPV4-specific inhibitor, suggesting that P4 can act as a ligand for TRPV4. Such P4-mediated Ca2+-influx is altered in cells expressing disease causing TRPV4 mutants, namely in L596P, R616Q, and also in embryonic lethal mutant L618P. P4 dampens, both in terms of "extent" as well as the "pattern" of the Ca2+-influx by other stimulus too in cells expressing TRPV4-Wt, suggesting that P4 crosstalk with the TRPV4-mediated Ca2+-signalling, both in quick and long-term manner. We propose that P4 crosstalk with TRPV4 might be relevant for both acute and chronic pain as well as for other health-related functions.


Asunto(s)
Progesterona , Canales Catiónicos TRPV , Canales Catiónicos TRPV/genética , Ligandos , Transducción de Señal , Mutación
2.
Biochim Biophys Acta Biomembr ; 1865(2): 184085, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36403799

RESUMEN

TRPV4 is a polymodal and non-selective cation channel that is activated by multiple physical and chemical stimuli. >50 naturally occurring point-mutation of TRPV4 have been identified in human, most of which induce different diseases commonly termed as channelopathies. While, these mutations are either "gain-of-function" or "loss-of-function" in nature, the exact molecular and cellular mechanisms behind such diverse channelopathies are largely unknown. In this work, we analyze the evolutionary conservation of individual amino acids present in the lipid-water-interface (LWI) regions and the relationship of TRPV4 with membrane cholesterol. Our data suggests that the positive-negative charges and hydrophobic-hydrophilic amino acids form "specific patterns" in the LWI region which remain conserved throughout the vertebrate evolution and thus suggesting for the specific microenvironment where TRPV4 remain functional. Notably, Spondylometaphyseal Dysplasia, Kozlowski (SMDK) disease causing L596P mutation disrupts this pattern significantly at the LWI region. L596P mutant also sequesters Caveolin-1 differently, especially in partial cholesterol-depleted (~40 % reduction) conditions. L596P shows altered localization in membrane and enhanced Ca2+-influx properties in cell as well as in filopodia-like structures. We propose that conserved pattern of amino acids is an important parameter for proper localization and functions of TRPV4 in physiological conditions. These findings also offer a new paradigm to analyze the channelopathies caused by mutations in LWI regions of other channels as well.


Asunto(s)
Enfermedades del Desarrollo Óseo , Canalopatías , Canales Catiónicos TRPV , Humanos , Aminoácidos , Enfermedades del Desarrollo Óseo/genética , Canalopatías/genética , Colesterol/genética , Colesterol/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo
3.
Curr Top Membr ; 89: 155-188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36210148

RESUMEN

Transient receptor potential vanilloid sub-type 4 (TRPV4) is a six transmembrane protein that acts as a non-selective Ca2+ channel. Notably, TRPV4 is present in almost all animals, from lower eukaryotes to humans and is expressed in diverse tissue and cell types. Accordingly, TRPV4 is endogenously expressed in several types of immune cells that represent both innate and adaptive immune systems of higher organism. TRPV4 is known to be activated by physiological temperature, suggesting that it acts as a molecular temperature sensor and thus plays a key role in temperature-dependent immune activation. It is also activated by diverse endogenous ligands, lipid metabolites, physical and mechanical stimuli. Both expression and function of TRPV4 in various immune cells, including T cells and macrophages, are also modulated by multiple pro- and anti-inflammatory compounds. The results from several laboratories suggest that TRPV4 is involved in the immune activation, a phenomenon with evolutionary significance. Because of its diverse engagement in the neuronal and immune systems, TRPV4 is a potential therapeutic target for several immune-related disorders.


Asunto(s)
Neuronas , Canales Catiónicos TRPV , Animales , Humanos , Sistema Inmunológico/metabolismo , Lípidos , Neuronas/metabolismo , Canales Catiónicos TRPV/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...