Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cancer ; 5(1): 46-65, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30616755

RESUMEN

Glioblastoma (GBM) is the most common and fatal primary malignant brain tumor. Despite advances in the understanding of the biology of gliomas, little has changed in the treatment of these tumors in the past decade. Phase III clinical trials showed no benefit for the use of bevacizumab in newly diagnosed patients, leading to a renewed search for new antiangiogenic drugs, as well as immunotherapeutic approaches, including checkpoint inhibitors, chimeric antigen receptor T cells, and intracerebral CpG-oligodeoxynucleotides. The emerging role of infiltrating microglia and macrophages, and of metabolic alterations, is also being taken into account in preclinical research and drug development. In this review, we discuss progress in the search for new therapeutic strategies, particularly approaches focusing on the tumor microenvironment.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia Molecular Dirigida , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Metabolismo Energético/efectos de los fármacos , Terapia Genética , Glioblastoma/etiología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inmunoterapia Adoptiva/métodos , Terapia Molecular Dirigida/métodos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
2.
Cancer Cell Int ; 16: 46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27330409

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary brain tumor presenting self-renewing cancer stem cells. The role of these cells on the development of the tumors has been proposed to recapitulate programs from embryogenesis. Recently, the embryonic transforming growth factor-ß (TGF-ß) protein Nodal has been shown to be reactivated upon tumor development; however, its availability in GBM cells has not been addressed so far. In this study, we investigated by an original approach the mechanisms that dynamically control both intra and extracellular Nodal availability during GBM tumorigenesis. METHODS: We characterized the dynamics of Nodal availability in both stem and more differentiated GBM cells through morphological analysis, immunofluorescence of Nodal protein and of early (EEA1 and Rab5) and late (Rab7 and Rab11) endocytic markers and Western Blot. Tukey's test was used to analyze the prevalent correlation of Nodal with different endocytic markers inside specific differentiation states, and Sidak's multiple comparisons test was used to compare the prevalence of Nodal/endocytic markers co-localization between two differentiation states of GBM cells. Paired t test was used to analyze the abundance of Nodal protein, in extra and intracellular media. RESULTS: The cytoplasmic distribution of Nodal was dynamically regulated and strongly correlated with the differentiation status of GBM cells. While Nodal-positive vesicle-like particles were symmetrically distributed in GBM stem cells (GBMsc), they presented asymmetric perinuclear localization in more differentiated GBM cells (mdGBM). Strikingly, when subjected to dedifferentiation, the distribution of Nodal in mdGBM shifted to a symmetric pattern. Moreover, the availability of both intracellular and secreted Nodal were downregulated upon GBMsc differentiation, with cells becoming elongated, negative for Nodal and positive for Nestin. Interestingly, the co-localization of Nodal with endosomal vesicles also depended on the differentiation status of the cells, with Nodal seen more packed in EEA1/Rab5 + vesicles in GBMsc and more in Rab7/11 + vesicles in mdGBM. CONCLUSIONS: Our results show for the first time that Nodal availability relates to GBM cell differentiation status and that it is dynamically regulated by an endocytic pathway during GBM tumorigenesis, shedding new light on molecular pathways that might emerge as putative targets for Nodal signaling in GBM therapy.

3.
Exp Cell Res ; 317(15): 2073-85, 2011 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-21740900

RESUMEN

The extracellular matrix (ECM) contains important cues for tissue homeostasis and morphogenesis. The matricellular protein tenascin-C (TN-C) is overexpressed in remodeling tissues and cancer. In the present work, we studied the effect of different ECM-which exhibited a significant diversity in their TN-C content-in endothelial survival, proliferation and tubulogenic differentiation: autologous (endothelial) ECM devoid of TN-C, but bearing large amounts of FN; fibroblast ECM, bearing both high TN-C and FN contents; and finally, glioma-derived matrices, usually poor in FN, but very rich in TN-C. HUVECs initially adhered to the immobilized matrix produced by U373 MG glioma cells, but significantly detached and died by anoikis (50 to 80%) after 24h, as compared with cells incubated with endothelial and fibroblast matrices. Surviving endothelial cells (20 to 50%) became up to 6-fold more proliferative and formed 74-97% less tube-like structures in vitro than cells grown on non-tumoral matrices. An antibody against the EGF-like repeats of tenascin-C (TN-C) partially rescued cells from the tubulogenic defect, indicating that this molecule is responsible for the selection of highly proliferative and tubulogenic defective endothelial cells. Interestingly, by using defined substrata, in conditions that mimic glioma and normal cell ECM composition, we observed that fibronectin (FN) modulates the TN-C-induced selection of endothelial cells. Our data show that TN-C is able to modulate endothelial branching morphogenesis in vitro and, since it is prevalent in matrices of injured and tumor tissues, also suggest a role for this protein in vascular morphogenesis, in these physiological contexts.


Asunto(s)
Proliferación Celular , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Matriz Extracelular/metabolismo , Tenascina/metabolismo , Animales , Adhesión Celular , Glioma/metabolismo , Humanos , Ratas , Ratas Wistar
4.
Life Sci ; 89(15-16): 532-9, 2011 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-21641917

RESUMEN

Glioblastomas (GBMs) are considered to be one of the deadliest human cancers, characterized by a high proliferative rate, aggressive invasiveness and insensitivity to radio- and chemotherapy, as well as a short patient survival period. Moreover, GBMs are among the most vascularized and invasive cancers in humans. Angiogenesis in GBMs is correlated with the grade of malignancy and is inversely correlated with patient survival. One of the first steps in tumor invasions is migration. GBM cells have the ability to infiltrate and disrupt physical barriers such as basement membranes, extracellular matrix and cell junctions. The invasion process includes the overexpression of several members of a super-family of zinc-based proteinases, the Metzincin, in particular a sub-group, metalloproteinases. Another interesting aspect is that, inside the GBM tissue, there are up to 30% of microglia or macrophages. However, little is known about the immune performance and interactions of the microglia with GBMs. These singular properties of GBMs will be described here. A sub-population of cells with stem-like properties may be the source of tumors since, apparently, GBM stem cells (GSCs) are highly resistant to current cancer treatments. These cancer therapies, while killing the majority of tumor cells, ultimately fail in GBM treatment because they do not eliminate GSCs, which survive to regenerate new tumors. Finally, GBM patient prognostic has shown little improvement in decades. In this context, we will discuss how the membrane-acting toxins called cytolysins can be a potential new tool for GBM treatment.


Asunto(s)
Glioblastoma/patología , Neoplasias del Sistema Nervioso/patología , Animales , Glioblastoma/irrigación sanguínea , Humanos , Metaloproteasas/fisiología , Invasividad Neoplásica/patología , Células Madre Neoplásicas/fisiología , Neovascularización Patológica/patología , Neoplasias del Sistema Nervioso/irrigación sanguínea , Proteínas Citotóxicas Formadoras de Poros/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...