Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862216

RESUMEN

Nuclear receptors (NRs) are ligand-dependent transcription factors required for liver development and function. As a consequence, NRs have emerged as attractive drug targets in a wide range of liver diseases. However, liver dysfunction and failure are linked to loss of hepatocyte identity characterised by deficient NR expression and activities. This might at least partly explain why several pharmacological NR modulators have proven insufficiently efficient to improve liver functionality in advanced stages of diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this perspective, we review the most recent advances in the hepatic NR field and discuss the contribution of multiomic approaches to our understanding of their role in the molecular organisation of an intricated transcriptional regulatory network, as well as in liver intercellular dialogues and interorgan cross-talks. We discuss the potential benefit of novel therapeutic approaches simultaneously targeting multiple NRs, which would not only reactivate the hepatic NR network and restore hepatocyte identity but also impact intercellular and interorgan interplays whose importance to control liver functions is further defined. Finally, we highlight the need of considering individual parameters such as sex and disease stage in the development of NR-based clinical strategies.

2.
EMBO Rep ; 24(9): e57020, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37424431

RESUMEN

Cell identity is specified by a core transcriptional regulatory circuitry (CoRC), typically limited to a small set of interconnected cell-specific transcription factors (TFs). By mining global hepatic TF regulons, we reveal a more complex organization of the transcriptional regulatory network controlling hepatocyte identity. We show that tight functional interconnections controlling hepatocyte identity extend to non-cell-specific TFs beyond the CoRC, which we call hepatocyte identity (Hep-ID)CONNECT TFs. Besides controlling identity effector genes, Hep-IDCONNECT TFs also engage in reciprocal transcriptional regulation with TFs of the CoRC. In homeostatic basal conditions, this translates into Hep-IDCONNECT TFs being involved in fine tuning CoRC TF expression including their rhythmic expression patterns. Moreover, a role for Hep-IDCONNECT TFs in the control of hepatocyte identity is revealed in dedifferentiated hepatocytes where Hep-IDCONNECT TFs are able to reset CoRC TF expression. This is observed upon activation of NR1H3 or THRB in hepatocarcinoma or in hepatocytes subjected to inflammation-induced loss of identity. Our study establishes that hepatocyte identity is controlled by an extended array of TFs beyond the CoRC.


Asunto(s)
Regulación de la Expresión Génica , Factores de Transcripción , Factores de Transcripción/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Redes Reguladoras de Genes
3.
J Bone Miner Res ; 38(10): 1497-1508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37222072

RESUMEN

Transgender youth increasingly present at pediatric gender services. Some of them receive long-term puberty suppression with gonadotropin-releasing hormone analogues (GnRHa) before starting gender-affirming hormones (GAH). The impact of GnRHa use started in early puberty on bone composition and bone mass accrual is unexplored. It is furthermore unclear whether subsequent GAH fully restore GnRHa effects and whether the timing of GAH introduction matters. To answer these questions, we developed a mouse model mimicking the clinical strategy applied in trans boys. Prepubertal 4-week-old female mice were treated with GnRHa alone or with GnRHa supplemented with testosterone (T) from 6 weeks (early puberty) or 8 weeks (late puberty) onward. Outcomes were analyzed at 16 weeks and compared with untreated mice of both sexes. GnRHa markedly increased total body fat mass, decreased lean body mass, and had a modest negative impact on grip strength. Both early and late T administration shaped body composition to adult male levels, whereas grip strength was restored to female values. GnRHa-treated animals showed lower trabecular bone volume and reduced cortical bone mass and strength. These changes were reversed by T to female levels (cortical bone mass and strength) irrespective of the time of administration or even fully up to adult male control values (trabecular parameters) in case of earlier T start. The lower bone mass in GnRHa-treated mice was associated with increased bone marrow adiposity, also reversed by T. In conclusion, prolonged GnRHa use started in prepubertal female mice modifies body composition toward more fat and less lean mass and impairs bone mass acquisition and strength. Subsequent T administration counteracts GnRHa impact on these parameters, shaping body composition and trabecular parameters to male values while restoring cortical bone architecture and strength up to female but not male control levels. These findings could help guide clinical strategies in transgender care. © 2023 American Society for Bone and Mineral Research (ASBMR).

4.
Endocr Connect ; 11(11)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048500

RESUMEN

Both in the United States and Europe, the number of minors who present at transgender healthcare services before the onset of puberty is rapidly expanding. Many of those who will have persistent gender dysphoria at the onset of puberty will pursue long-term puberty suppression before reaching the appropriate age to start using gender-affirming hormones. Exposure to pubertal sex steroids is thus significantly deferred in these individuals. Puberty is a critical period for bone development: increasing concentrations of estrogens and androgens (directly or after aromatization to estrogens) promote progressive bone growth and mineralization and induce sexually dimorphic skeletal changes. As a consequence, safety concerns regarding bone development and increased future fracture risk in transgender youth have been raised. We here review published data on bone development in transgender adolescents, focusing in particular on differences in age and pubertal stage at the start of puberty suppression, chosen strategy to block puberty progression, duration of puberty suppression, and the timing of re-evaluation after estradiol or testosterone administration. Results consistently indicate a negative impact of long-term puberty suppression on bone mineral density, especially at the lumbar spine, which is only partially restored after sex steroid administration. Trans girls are more vulnerable than trans boys for compromised bone health. Behavioral health measures that can promote bone mineralization, such as weight-bearing exercise and calcium and vitamin D supplementation, are strongly recommended in transgender youth, during the phase of puberty suppression and thereafter.

5.
Endocrinology ; 163(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35908178

RESUMEN

The androgen receptor (AR) plays a central role in the development and maintenance of the male phenotype. The binding of androgens to the receptor induces interactions between the carboxyterminal ligand-binding domain and the highly conserved 23FQNLF27 motif in the aminoterminal domain. The role of these so-called N/C interactions in AR functioning is debated. In vitro assays show that mutating the AR in the 23FQNLF27 motif (called ARNoC) attenuates the AR transactivation of reporter genes, has no effect on ligand binding, but does affect protein-protein interactions with several AR coregulators. To test the in vivo relevance of the N/C interaction, we analyzed the consequences of the genomic introduction of the ARNoC mutation in mice. Surprisingly, the ARNoC/Y mice show a normal male development, with unaffected male anogenital distance and normal accessory sex glands, male circulating androgen levels, body composition, and fertility. The responsiveness of androgen target genes in kidney, prostate, and testes was also unaffected. We thus conclude that the N/C interactions in the AR are not essential for the development of a male phenotype under normal physiological conditions.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Andrógenos/farmacología , Animales , Ligandos , Masculino , Ratones , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Activación Transcripcional
6.
Endocrinology ; 163(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35640239

RESUMEN

Failure of bone mass maintenance in spite of functional loading is an important contributor to osteoporosis and related fractures. While the link between sex steroids and the osteogenic response to loading is well established, the underlying mechanisms are unknown, hampering clinical relevance. Androgens inhibit mechanoresponsiveness in male mice, but the cell type mediating this effect remains unidentified. To evaluate the role of neuronal sex steroid receptor signaling in the male bone's adaptive capacity, we subjected adult male mice with an extrahypothalamic neuron-specific knockout of the androgen receptor (N-ARKO) or the estrogen receptor alpha (N-ERαKO) to in vivo mechanical stimulation of the tibia. Loading increased cortical thickness in the control animals mainly through periosteal expansion, as total cross-sectional tissue area and cortical bone area but not medullary area were higher in the loaded than the unloaded tibia. Trabecular bone volume fraction also increased upon loading in the control group, mostly due to trabecular thickening. N-ARKO and N-ERαKO males displayed a loading response at both the cortical and trabecular bone compartments that was not different from their control littermates. In conclusion, we show that the presence of androgen receptor or estrogen receptor alpha in extrahypothalamic neurons is dispensable for the osteogenic response to mechanical loading in male mice.


Asunto(s)
Receptor alfa de Estrógeno , Receptores Androgénicos , Animales , Estudios Transversales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Tibia
7.
EMBO Rep ; 22(12): e52764, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661369

RESUMEN

Whereas dimerization of the DNA-binding domain of the androgen receptor (AR) plays an evident role in recognizing bipartite response elements, the contribution of the dimerization of the ligand-binding domain (LBD) to the correct functioning of the AR remains unclear. Here, we describe a mouse model with disrupted dimerization of the AR LBD (ARLmon/Y ). The disruptive effect of the mutation is demonstrated by the feminized phenotype, absence of male accessory sex glands, and strongly affected spermatogenesis, despite high circulating levels of testosterone. Testosterone replacement studies in orchidectomized mice demonstrate that androgen-regulated transcriptomes in ARLmon/Y mice are completely lost. The mutated AR still translocates to the nucleus and binds chromatin, but does not bind to specific AR binding sites. In vitro studies reveal that the mutation in the LBD dimer interface also affects other AR functions such as DNA binding, ligand binding, and co-regulator binding. In conclusion, LBD dimerization is crucial for the development of AR-dependent tissues through its role in transcriptional regulation in vivo. Our findings identify AR LBD dimerization as a possible target for AR inhibition.


Asunto(s)
Receptores Androgénicos , Animales , Sitios de Unión/genética , Dimerización , Ligandos , Masculino , Ratones , Receptores Androgénicos/química , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Activación Transcripcional
8.
Endocrinology ; 162(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33674833

RESUMEN

Testosterone (T) reduces male fat mass, but the underlying mechanisms remain elusive, limiting its clinical relevance in hypogonadism-associated obesity. Here, we subjected chemically castrated high-fat diet-induced adult obese male mice to supplementation with T or the nonaromatizable androgen dihydrotestosterone (DHT) for 20 weeks. Both hormones increased lean mass, thereby indirectly increasing oxygen consumption and energy expenditure. In addition, T but not DHT decreased fat mass and increased ambulatory activity, indicating a role for aromatization into estrogens. Investigation of the pattern of aromatase expression in various murine tissues revealed the absence of Cyp19a1 expression in adipose tissue while high levels were observed in brain and gonads. In obese hypogonadal male mice with extrahypothalamic neuronal estrogen receptor alpha deletion (N-ERαKO), T still increased lean mass but was unable to decrease fat mass. The stimulatory effect of T on ambulatory activity was also abolished in N-ERαKO males. In conclusion, our work demonstrates that the fat-burning action of T is dependent on aromatization into estrogens and is at least partially mediated by the stimulation of physical activity via extrahypothalamic ERα signaling. In contrast, the increase in lean mass upon T supplementation is mediated through the androgen receptor and indirectly leads to an increase in energy expenditure, which might also contribute to the fat-burning effects of T.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Receptor alfa de Estrógeno/fisiología , Actividad Motora/fisiología , Testosterona/farmacología , Tejido Adiposo/metabolismo , Animales , Dihidrotestosterona/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Actividad Motora/efectos de los fármacos , Obesidad/genética , Obesidad/metabolismo , Condicionamiento Físico Animal/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Congéneres de la Testosterona/farmacología
9.
Am J Physiol Endocrinol Metab ; 320(3): E415-E424, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33308013

RESUMEN

Sex steroids are critical for skeletal development and maturation during puberty as well as for skeletal maintenance during adult life. However, the exact time during puberty when sex steroids have the highest impact as well as the ability of bone to recover from transient sex steroid deficiency is unclear. Surgical castration is a common technique to study sex steroid effects in rodents, but it is irreversible, invasive, and associated with metabolic and behavioral alterations. Here, we used a low dose (LD) or a high dose (HD) of gonadotropin-releasing hormone antagonist to either temporarily or persistently suppress sex steroid action in male mice, respectively. The LD group, a model for delayed puberty, did not show changes in linear growth or body composition, but displayed reduced trabecular bone volume during puberty, which fully caught up at adult age. In contrast, the HD group, representing complete pubertal suppression, showed a phenotype reminiscent of that observed in surgically castrated rodents. Indeed, HD animals exhibited severely impaired cortical and trabecular bone acquisition, decreased body weight and lean mass, and increased fat mass. In conclusion, we developed a rodent model of chemical castration that can be used as an alternative to surgical castration. Moreover, the transient nature of the intervention enables to study the effects of delayed puberty and reversibility of sex steroid deficiency.NEW & NOTEWORTHY We developed a rodent model of chemical castration, which can be used as an alternative to surgical castration. Moreover, the transient nature of the intervention enables to study the effects of delayed puberty and reversibility of sex steroid deficiency.


Asunto(s)
Desarrollo Óseo , Huesos/fisiología , Hormonas Esteroides Gonadales/deficiencia , Hipogonadismo/patología , Animales , Composición Corporal/efectos de los fármacos , Desarrollo Óseo/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Hormonas Esteroides Gonadales/farmacología , Hormona Liberadora de Gonadotropina/antagonistas & inhibidores , Hormona Liberadora de Gonadotropina/farmacología , Antagonistas de Hormonas/farmacología , Hipogonadismo/complicaciones , Hipogonadismo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Orquiectomía , Maduración Sexual/fisiología , Factores de Tiempo
10.
Cells ; 9(10)2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998360

RESUMEN

Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.


Asunto(s)
Proteínas de Unión al ADN/genética , Factor Nuclear 4 del Hepatocito/genética , Hígado/metabolismo , Organogénesis/genética , Sitios de Unión/genética , Humanos , Hígado/lesiones , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética
11.
Epigenomics ; 12(8): 715-723, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32396464

RESUMEN

Super-enhancers (SE) have become a popular concept and are widely used as a feature defining key identity genes. Here, we provide perspectives on the use of SE to define and identify cell/tissue-identity genes. By mining SE and their associated genes using murine functional genomics data, we highlight and discuss current limitations and open questions regarding both the sensitivity and specificity of identity genes/transcription factors predicted by SE. In this context, we point to cell/tissue-specific promoters as an important additional level of information, which we propose to combine with SE when aiming to define potential identity genes.


Asunto(s)
Regulación de la Expresión Génica , Animales , Perfilación de la Expresión Génica , Genómica/métodos , Ratones , Especificidad de Órganos/genética , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcriptoma
12.
Mol Syst Biol ; 16(5): e9156, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407006

RESUMEN

Liver injury triggers adaptive remodeling of the hepatic transcriptome for repair/regeneration. We demonstrate that this involves particularly profound transcriptomic alterations where acute induction of genes involved in handling of endoplasmic reticulum stress (ERS) is accompanied by partial hepatic dedifferentiation. Importantly, widespread hepatic gene downregulation could not simply be ascribed to cofactor squelching secondary to ERS gene induction, but rather involves a combination of active repressive mechanisms. ERS acts through inhibition of the liver-identity (LIVER-ID) transcription factor (TF) network, initiated by rapid LIVER-ID TF protein loss. In addition, induction of the transcriptional repressor NFIL3 further contributes to LIVER-ID gene repression. Alteration to the liver TF repertoire translates into compromised activity of regulatory regions characterized by the densest co-recruitment of LIVER-ID TFs and decommissioning of BRD4 super-enhancers driving hepatic identity. While transient repression of the hepatic molecular identity is an intrinsic part of liver repair, sustained disequilibrium between the ERS and LIVER-ID transcriptional programs is linked to liver dysfunction as shown using mouse models of acute liver injury and livers from deceased human septic patients.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Estrés del Retículo Endoplásmico/genética , Regulación de la Expresión Génica/genética , Hepatopatías/metabolismo , Transcriptoma/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Secuenciación de Inmunoprecipitación de Cromatina , Regulación hacia Abajo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hepatopatías/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Tapsigargina/toxicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba
13.
FASEB J ; 34(5): 7118-7126, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32239553

RESUMEN

Sexually dimorphic bone structure emerges largely during puberty. Sex steroids are critical for peak bone mass acquisition in both genders. In particular, the biphasic effects of estrogens mediate the skeletal sexual dimorphism. However, so far the stimulatory vs inhibitory actions of estrogens on bone mass are not fully explained by direct effects on bone cells. Recently, it has become evident that there is possible neuroendocrine action of estrogen receptor alpha (ERα) on the skeleton. Based on these considerations, we hypothesized that neuronal ERα-signaling may contribute to the skeletal growth during puberty. Here, we generated mice with tamoxifen-inducible Thy1-Cre mediated ERα inactivation during late puberty specifically in extrahypothalamic neurons (N-ERαKO). Inactivation of neuronal ERα did not alter the body weight in males, whereas N-ERαKO females exhibited a higher body weight and increased body and bone length compared to their control littermates at 16 weeks of age. Ex vivo microCT analysis showed increased radial bone expansion of the midshaft femur in female N-ERαKO along with higher serum levels of insulin-like growth factor (IGF)-1 as well as IGF-binding protein (IGFBP)-3. Furthermore, the 3-point bending test revealed increased bone strength in female N-ERαKO. In contrast, inactivation of neuronal ERα had no major effect on bone growth in males. In conclusion, we demonstrate that central ERα-signaling limits longitudinal bone growth and radial bone expansion specifically in females potentially by interacting with the GH/IGF-1 axis.


Asunto(s)
Desarrollo Óseo/fisiología , Receptor alfa de Estrógeno/metabolismo , Neuronas/metabolismo , Maduración Sexual/fisiología , Animales , Fenómenos Biomecánicos , Densidad Ósea/genética , Densidad Ósea/fisiología , Desarrollo Óseo/genética , Huesos/anatomía & histología , Huesos/diagnóstico por imagen , Huesos/fisiología , Receptor alfa de Estrógeno/deficiencia , Receptor alfa de Estrógeno/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Caracteres Sexuales , Maduración Sexual/genética , Transducción de Señal , Microtomografía por Rayos X
14.
J Hepatol ; 69(5): 1099-1109, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29981427

RESUMEN

BACKGROUND & AIMS: Embedded into a complex signaling network that coordinates glucose uptake, usage and production, the nuclear bile acid receptor FXR is expressed in several glucose-processing organs including the liver. Hepatic gluconeogenesis is controlled through allosteric regulation of gluconeogenic enzymes and by glucagon/cAMP-dependent transcriptional regulatory pathways. We aimed to elucidate the role of FXR in the regulation of fasting hepatic gluconeogenesis. METHODS: The role of FXR in hepatic gluconeogenesis was assessed in vivo and in mouse primary hepatocytes. Gene expression patterns in response to glucagon and FXR agonists were characterized by quantitative reverse transcription PCR and microarray analysis. FXR phosphorylation by protein kinase A was determined by mass spectrometry. The interaction of FOXA2 with FXR was identified by cistromic approaches and in vitro protein-protein interaction assays. The functional impact of the crosstalk between FXR, the PKA and FOXA2 signaling pathways was assessed by site-directed mutagenesis, transactivation assays and restoration of FXR expression in FXR-deficient hepatocytes in which gene expression and glucose production were assessed. RESULTS: FXR positively regulates hepatic glucose production through two regulatory arms, the first one involving protein kinase A-mediated phosphorylation of FXR, which allowed for the synergistic activation of gluconeogenic genes by glucagon, agonist-activated FXR and CREB. The second arm involves the inhibition of FXR's ability to induce the anti-gluconeogenic nuclear receptor SHP by the glucagon-activated FOXA2 transcription factor, which physically interacts with FXR. Additionally, knockdown of Foxa2 did not alter glucagon-induced and FXR agonist enhanced expression of gluconeogenic genes, suggesting that the PKA and FOXA2 pathways regulate distinct subsets of FXR responsive genes. CONCLUSIONS: Thus, hepatic glucose production is regulated during physiological fasting by FXR, which integrates the glucagon/cAMP signal and the FOXA2 signal, by being post-translationally modified, and by engaging in protein-protein interactions, respectively. LAY SUMMARY: Activation of the nuclear bile acid receptor FXR regulates gene expression networks, controlling lipid, cholesterol and glucose metabolism, which are mostly effective after eating. Whether FXR exerts critical functions during fasting is unknown. The results of this study show that FXR transcriptional activity is regulated by the glucagon/protein kinase A and the FOXA2 signaling pathways, which act on FXR through phosphorylation and protein-protein interactions, respectively, to increase hepatic glucose synthesis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Ayuno/metabolismo , Gluconeogénesis , Factor Nuclear 3-beta del Hepatocito/fisiología , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Regulación de la Expresión Génica , Glucagón/fisiología , Glucosa/metabolismo , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación
15.
J Endocrinol ; 238(1): R31-R52, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29743340

RESUMEN

Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.


Asunto(s)
Andrógenos/farmacología , Encéfalo/efectos de los fármacos , Estrógenos/farmacología , Ejercicio Físico/fisiología , Músculos/efectos de los fármacos , Caracteres Sexuales , Andrógenos/metabolismo , Animales , Estrógenos/metabolismo , Femenino , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/farmacología , Humanos , Masculino , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología
16.
Sci Rep ; 8(1): 957, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29343749

RESUMEN

Low testosterone (T) in men, especially its free fraction, has been associated with loss of energy. In accordance, orchidectomy (ORX) in rodents results in decreased physical activity. Still, the mechanisms through which T stimulates activity remain mostly obscure. Here, we studied voluntary wheel running behavior in three different mouse models of androgen deficiency: ORX, androgen receptor (AR) knock-out (ARKO) and sex hormone binding globulin (SHBG)-transgenic mice, a novel mouse model of "low free T". Our results clearly show a fast and dramatic action of T stimulating wheel running, which is not explained by its action on muscle, as evidenced by neuromuscular studies and in a muscle-specific conditional ARKO mouse model. The action of T occurs via its free fraction, as shown by the results in SHBG-transgenic mice, and it implies both androgenic and estrogenic pathways. Both gene expression and functional studies indicate that T modulates the in vivo sensitivity to dopamine (DA) agonists. Furthermore, the restoration of wheel running by T is inhibited by treatment with DA antagonists. These findings reveal that the free fraction of T, both via AR and indirectly through aromatization into estrogens, stimulates physical activity behavior in male mice by acting on central DA pathways.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Condicionamiento Físico Animal/fisiología , Testosterona/metabolismo , Andrógenos/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/metabolismo , Actividad Motora/fisiología , Orquiectomía/métodos , Receptores Androgénicos/metabolismo , Carrera/fisiología
17.
Mol Cell Endocrinol ; 452: 57-63, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28504114

RESUMEN

The selective estrogen receptor modulator tamoxifen exerts estrogen agonistic or antagonistic actions on several tissues, including bone. The off-target effects of tamoxifen are one of the most widely recognized pitfalls of tamoxifen-inducible Cre recombinases (CreERs), potentially confounding the phenotypic findings. Still, the validation of tamoxifen induction schemes that minimize the side effects of the drug has not been addressed. Here, we compared the side effects on the skeleton and other androgen-responsive targets of a shortened tamoxifen regimen (2 doses of 190 mg/kg body weight by oral gavage) to a standard protocol (4 doses) and determined their efficiency in inducing CreER-mediated gene deletion. In addition, both a vehicle- and a 10-dose group, which served as a positive control for tamoxifen side effects, were also included. For this purpose, we generated male mice with a floxed androgen receptor (AR) and a neuron-specifically expressed CreER. Treatment with two doses of tamoxifen was the only regimen that did not diminish androgenic bioactivity, as assessed by both seminal vesicles and levator ani/bulbocavernosus muscle weights and serum testosterone concentrations. Similarly, trabecular and cortical femoral bone structure were dramatically altered by both the standard and high-dose protocols but not by the shortened version. Serum osteocalcin and bone-gene expression analyses confirmed the absence of effects on bone by 2 doses of tamoxifen. This protocol decreased AR mRNA levels efficiently and specifically in the nervous system. Thus, we optimized a protocol for tamoxifen-induced CreER gene deletion in mice without off-target effects on bone and male reproductive organs.


Asunto(s)
Huesos/efectos de los fármacos , Eliminación de Gen , Técnicas de Inactivación de Genes , Integrasas/metabolismo , Recombinación Genética/efectos de los fármacos , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Tamoxifeno/farmacología , Análisis de Varianza , Animales , Peso Corporal/efectos de los fármacos , Hueso Esponjoso/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/agonistas , Integrasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Osteocalcina/sangre , Osteocalcina/genética , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación , Moduladores Selectivos de los Receptores de Estrógeno/efectos adversos , Vesículas Seminales , Tamoxifeno/administración & dosificación , Tamoxifeno/efectos adversos , Testosterona/sangre , Factores de Tiempo
18.
J Clin Invest ; 127(4): 1202-1214, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368286

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) regulate energy metabolism and hence are therapeutic targets in metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. While they share anti-inflammatory activities, the PPAR isotypes distinguish themselves by differential actions on lipid and glucose homeostasis. In this Review we discuss the complementary and distinct metabolic effects of the PPAR isotypes together with the underlying cellular and molecular mechanisms, as well as the synthetic PPAR ligands that are used in the clinic or under development. We highlight the potential of new PPAR ligands with improved efficacy and safety profiles in the treatment of complex metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Receptores Activados del Proliferador del Peroxisoma/genética
19.
Genome Res ; 27(6): 985-996, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28400425

RESUMEN

Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs.


Asunto(s)
Genoma , Hígado/metabolismo , Elementos Reguladores de la Transcripción , Transcripción Genética , Algoritmos , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Ratones , Ratones Noqueados , PPAR alfa/deficiencia , PPAR alfa/genética , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética
20.
Physiol Rev ; 97(1): 135-187, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27807202

RESUMEN

Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.


Asunto(s)
Andrógenos/metabolismo , Huesos/metabolismo , Huesos/fisiopatología , Estrógenos/metabolismo , Osteoporosis/fisiopatología , Animales , Femenino , Homeostasis/fisiología , Humanos , Masculino , Osteoporosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...