Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401580, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757205

RESUMEN

Both tight and specific binding of folded biological mRNA is required for gene silencing by oligonucleotide gene therapy agents. However, this is fundamentally impossible using the conventional oligonucleotide probes according to the affinity/specificity dilemma. This study addresses this problem by using multicomponent agents (dubbed 'DNA nanomachine' or DNM) for RNA binding. DNMs bind RNA by four short RNA binding arms, which ensures tight and highly selective RNA binding. Along with the improved affinity, DNM maintained the high sequence selectivity of the conventional DNAzymes. DNM enabled up to 3-fold improvement in DNAzymes catalytic efficiency (kcat/Km) by facilitating both RNA substrate binding and product release steps of the catalytic cycle. This study demonstrates that multicomponent probes organized in sophisticated structures can help to achieve the balance between affinity and selectivity in recognizing folded RNA and thus creates a foundation for applying complex DNA nanostructures in gene therapy.

2.
Nucleic Acids Res ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38661191

RESUMEN

Multivalent recognition and binding of biological molecules is a natural phenomenon that increases the binding stability (avidity) without decreasing the recognition specificity. In this study, we took advantage of this phenomenon to increase the efficiency and maintain high specificity of RNA cleavage by DNAzymes (Dz). We designed a series of DNA constructs containing two Dz agents, named here bivalent Dz devices (BDD). One BDD increased the cleavage efficiency of a folded RNA fragment up to 17-fold in comparison with the Dz of a conventional design. Such an increase was achieved due to both the improved RNA binding and the increased probability of RNA cleavage by the two catalytic cores. By moderating the degree of Dz agent association in BDD, we achieved excellent selectivity in differentiating single-base mismatched RNA, while maintaining relatively high cleavage rates. Furthermore, a trivalent Dz demonstrated an even greater efficiency than the BDD in cleaving folded RNA. The data suggests that the cooperative action of several RNA-cleaving units can significantly improve the efficiency and maintain high specificity of RNA cleavage, which is important for the development of Dz-based gene knockdown agents.

3.
Chembiochem ; 25(1): e202300637, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37870555

RESUMEN

Cleavage of biological mRNA by DNAzymes (Dz) has been proposed as a variation of oligonucleotide gene therapy (OGT). The design of Dz-based OGT agents includes computational prediction of two RNA-binding arms with low affinity (melting temperatures (Tm ) close to the reaction temperature of 37 °C) to avoid product inhibition and maintain high specificity. However, RNA cleavage might be limited by the RNA binding step especially if the RNA is folded in secondary structures. This calls for the need for two high-affinity RNA-binding arms. In this study, we optimized 10-23 Dz-based OGT agents for cleavage of three RNA targets with different folding energies under multiple turnover conditions in 2 mM Mg2+ at 37 °C. Unexpectedly, one optimized Dz had each RNA-binding arm with a Tm ≥60 °C, without suffering from product inhibition or low selectivity. This phenomenon was explained by the folding of the RNA cleavage products into stable secondary structures. This result suggests that Dz with long (high affinity) RNA-binding arms should not be excluded from the candidate pool for OGT agents. Rather, analysis of the cleavage products' folding should be included in Dz selection algorithms. The Dz optimization workflow should include testing with folded rather than linear RNA substrates.


Asunto(s)
ADN Catalítico , ARN , ARN/química , ADN Catalítico/metabolismo , ARN Mensajero , Oligonucleótidos
4.
Theranostics ; 12(16): 7132-7157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276652

RESUMEN

Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.


Asunto(s)
ADN Catalítico , Ácidos Nucleicos de Péptidos , Animales , ARN Guía de Kinetoplastida/genética , Oligonucleótidos , Sistemas CRISPR-Cas/genética , ARN Interferente Pequeño/genética , Terapia Genética , ARN Mensajero , Regiones no Traducidas
5.
Chembiochem ; 22(10): 1750-1754, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33433948

RESUMEN

Oligonucleotide gene therapy (OGT) agents suppress specific mRNAs in cells and thus reduce the expression of targeted genes. The ability to unambiguously distinguish cancer from healthy cells can solve the low selectivity problem of OGT agents. Cancer RNA markers are expressed in both healthy and cancer cells with a higher expression level in cancer cells. We have designed a DNA-based construct, named DNA thresholder (DTh) that cleaves targeted RNA only at high concentrations of cancer marker RNA and demonstrates low cleavage activity at low marker concentrations. The RNA-cleaving activity can be adjusted within one order of magnitude of the cancer marker RNA concentration by simply redesigning DTh. Importantly, DTh recognizes cancer marker RNA, while cleaving targeted RNA; this offers a possibility to suppress vital genes exclusively in cancer cells, thus triggering their death. DTh is a prototype of computation-inspired molecular device for controlling gene expression and cancer treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , ADN Catalítico/metabolismo , MicroARNs/metabolismo , Neoplasias/diagnóstico , ARN/metabolismo , Biomarcadores de Tumor/genética , ADN Catalítico/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oligonucleótidos/uso terapéutico , ARN Interferente Pequeño/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...