Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 206: 971-979, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29223107

RESUMEN

Quantification of the economic value provided by migratory species can aid in targeting management efforts and funding to locations yielding the greatest benefits to society and species conservation. Here we illustrate a key step in this process by estimating hunting and birding values of the northern pintail (Anas acuta) within primary breeding and wintering habitats used during the species' annual migratory cycle in North America. We used published information on user expenditures and net economic values (consumer surplus) for recreational viewing and hunting to determine the economic value of pintail-based recreation in three primary breeding areas and two primary wintering areas. Summed expenditures and consumer surplus for northern pintail viewing were annually valued at $70M, and annual sport hunting totaled $31M (2014 USD). Expenditures for viewing ($42M) were more than twice as high than those for hunting ($18M). Estimates of consumer surplus, defined as the amount consumers are willing to pay above their current expenditures, were $15M greater for viewing ($28M) than for hunting ($13M). We discovered substantial annual consumer surplus ($41M) available for pintail conservation from birders and hunters. We also found spatial differences in economic value among the primary regions used by pintails, with viewing generally valued more in breeding regions than in wintering regions and the reverse being true for hunting. The economic value of pintail-based recreation in the Western wintering region ($26M) exceeded that in any other region by at least a factor of three. Our approach of developing regionally explicit economic values can be extended to other taxonomic groups, and is particularly suitable for migratory game birds because of the availability of large amounts of data. When combined with habitat-linked population models, regionally explicit values could inform development of more effective conservation finance and policy mechanisms to enhance environmental management and societal benefits across the geographically dispersed areas used by migratory species.


Asunto(s)
Migración Animal , Patos , Recreación/economía , Animales , América del Norte , Estaciones del Año
2.
J Anim Ecol ; 84(5): 1299-310, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25808951

RESUMEN

1. Prediction is fundamental to scientific enquiry and application; however, ecologists tend to favour explanatory modelling. We discuss a predictive modelling framework to evaluate ecological hypotheses and to explore novel/unobserved environmental scenarios to assist conservation and management decision-makers. We apply this framework to develop an optimal predictive model for juvenile (<1 year old) sandhill crane Grus canadensis recruitment of the Rocky Mountain Population (RMP). We consider spatial climate predictors motivated by hypotheses of how drought across multiple time-scales and spring/summer weather affects recruitment. 2. Our predictive modelling framework focuses on developing a single model that includes all relevant predictor variables, regardless of collinearity. This model is then optimized for prediction by controlling model complexity using a data-driven approach that marginalizes or removes irrelevant predictors from the model. Specifically, we highlight two approaches of statistical regularization, Bayesian least absolute shrinkage and selection operator (LASSO) and ridge regression. 3. Our optimal predictive Bayesian LASSO and ridge regression models were similar and on average 37% superior in predictive accuracy to an explanatory modelling approach. Our predictive models confirmed a priori hypotheses that drought and cold summers negatively affect juvenile recruitment in the RMP. The effects of long-term drought can be alleviated by short-term wet spring-summer months; however, the alleviation of long-term drought has a much greater positive effect on juvenile recruitment. The number of freezing days and snowpack during the summer months can also negatively affect recruitment, while spring snowpack has a positive effect. 4. Breeding habitat, mediated through climate, is a limiting factor on population growth of sandhill cranes in the RMP, which could become more limiting with a changing climate (i.e. increased drought). These effects are likely not unique to cranes. The alteration of hydrological patterns and water levels by drought may impact many migratory, wetland nesting birds in the Rocky Mountains and beyond. 5. Generalizable predictive models (trained by out-of-sample fit and based on ecological hypotheses) are needed by conservation and management decision-makers. Statistical regularization improves predictions and provides a general framework for fitting models with a large number of predictors, even those with collinearity, to simultaneously identify an optimal predictive model while conducting rigorous Bayesian model selection. Our framework is important for understanding population dynamics under a changing climate and has direct applications for making harvest and habitat management decisions.


Asunto(s)
Aves/fisiología , Clima , Ecosistema , Animales , Teorema de Bayes , Cambio Climático , Colorado , Modelos Biológicos , Dinámica Poblacional , Análisis de Regresión , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...