Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333277

RESUMEN

α-synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila. Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies leads to neuronal dysfunction and death.

2.
J Neurosci ; 43(9): 1614-1626, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653193

RESUMEN

α-Synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders, we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies lead to neuronal dysfunction and death.SIGNIFICANCE STATEMENT The small synaptic vesicle associate protein α-synuclein plays a critical role in the pathogenesis of Parkinson's disease and related disorders, but the disease-relevant binding partners of α-synuclein and proximate pathways critical for neurotoxicity require further definition. We show that α-synuclein binds directly to ß-spectrin, a key cytoskeletal protein required for localization of plasma membrane proteins and maintenance of neuronal viability. Binding of α-synuclein to ß-spectrin alters the organization of the spectrin-ankyrin complex, which is critical for localization and function of integral membrane proteins, including Na+/K+ ATPase. These finding outline a previously undescribed mechanism of α-synuclein neurotoxicity and thus suggest potential new therapeutic approaches in Parkinson's disease and related disorders.


Asunto(s)
Enfermedad de Parkinson , Espectrina , Animales , Femenino , Humanos , Masculino , Adenosina Trifosfatasas/metabolismo , alfa-Sinucleína/metabolismo , Ancirinas/metabolismo , Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Espectrina/metabolismo
3.
Genetics ; 195(3): 871-81, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24037266

RESUMEN

Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αß-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or ß-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αß-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of ß-spectrin caused fat body atrophy and larval lethality. Overexpression of ß-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The ß-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that ß-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo de los Lípidos/genética , Espectrina/genética , Espectrina/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Biológico Activo/genética , Membrana Celular/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Drosophila melanogaster/ultraestructura , Cuerpo Adiposo/metabolismo , Cuerpo Adiposo/ultraestructura , Femenino , Dosificación de Gen , Técnicas de Silenciamiento del Gen , Genes de Insecto , Larva/genética , Larva/metabolismo , Larva/ultraestructura , Masculino , Modelos Biológicos , Mutación , Fenotipo , Espectrina/antagonistas & inhibidores
4.
J Negat Results Biomed ; 9: 5, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20573195

RESUMEN

BACKGROUND: Current models suggest that the spectrin cytoskeleton stabilizes interacting ion transport proteins at the plasma membrane. The human erythrocyte anion exchanger (AE1) was the first membrane transport protein found to be associated with the spectrin cytoskeleton. Here we evaluated a conserved anion exchanger from Drosophila (DAE) as a marker for studies of the downstream effects of spectrin cytoskeleton mutations. RESULTS: Sequence comparisons established that DAE belongs to the SLC4A1-3 subfamily of anion exchangers that includes human AE1. Striking sequence conservation was observed in the C-terminal membrane transport domain and parts of the N-terminal cytoplasmic domain, but not in the proposed ankyrin-binding site. Using an antibody raised against DAE and a recombinant transgene expressed in Drosophila S2 cells DAE was shown to be a 136 kd plasma membrane protein. A major site of expression was found in the stomach acid-secreting region of the larval midgut. DAE codistributed with an infolded subcompartment of the basal plasma membrane of interstitial cells. However, spectrin did not codistribute with DAE at this site or in anterior midgut cells that abundantly expressed both spectrin and DAE. Ubiquitous knockdown of DAE with dsRNA eliminated antibody staining and was lethal, indicating that DAE is an essential gene product in Drosophila. CONCLUSIONS: Based on the lack of colocalization and the lack of sequence conservation at the ankyrin-binding site, it appears that the well-characterized interaction between AE1 and the spectrin cytoskeleton in erythrocytes is not conserved in Drosophila. The results establish a pattern in which most of the known interactions between the spectrin cytoskeleton and the plasma membrane in mammals do not appear to be conserved in Drosophila.


Asunto(s)
Antiportadores/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Espectrina/metabolismo , Secuencia de Aminoácidos , Animales , Proteína 1 de Intercambio de Anión de Eritrocito/química , Anticuerpos/inmunología , Antiportadores/química , Antiportadores/genética , Sistema Digestivo/citología , Sistema Digestivo/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Técnicas de Silenciamiento del Gen , Humanos , Larva/citología , Larva/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Alineación de Secuencia , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
5.
Mol Biol Cell ; 21(16): 2860-8, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20573981

RESUMEN

The protein spectrin is ubiquitous in animal cells and is believed to play important roles in cell shape and membrane stability, cell polarity, and endomembrane traffic. Experiments here were undertaken to identify sites of essential beta spectrin function in Drosophila and to determine whether spectrin and ankyrin function are strictly linked to one another. The Gal4-UAS system was used to drive tissue-specific overexpression of a beta spectrin transgene or to knock down beta spectrin expression with dsRNA. The results show that 1) overexpression of beta spectrin in most of the cell types studied was lethal; 2) knockdown of beta spectrin in most tissues had no detectable effect on growth or viability of the organism; and 3) nervous system-specific expression of a UAS-beta spectrin transgene was sufficient to overcome the lethality of a loss-of-function beta spectrin mutation. Thus beta spectrin expression in other cells was not required for development of fertile adult males, although females lacking nonneuronal spectrin were sterile. Previous data indicated that binding of the DAnk1 isoform of ankyrin to spectrin was partially dispensable for viability. Domain swap experiments here uncovered a different requirement for neuronal DAnk2 binding to spectrin and establish that DAnk2-binding is critical for beta spectrin function in vivo.


Asunto(s)
Ancirinas/metabolismo , Proteínas de Drosophila/metabolismo , Sistema Nervioso/metabolismo , Espectrina/metabolismo , Animales , Animales Modificados Genéticamente , Ancirinas/genética , Cruzamientos Genéticos , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Longevidad/genética , Masculino , Microscopía Confocal , Mutación , Sistema Nervioso/crecimiento & desarrollo , Neuronas/metabolismo , Unión Proteica , Interferencia de ARN , Glándulas Salivales/metabolismo , Espectrina/genética , Transgenes/genética
6.
J Biol Chem ; 283(18): 12643-53, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18287096

RESUMEN

The spectrin cytoskeleton assembles within discrete regions of the plasma membrane in a wide range of animal cell types. Although recent studies carried out in vertebrate systems indicate that spectrin assembly occurs indirectly through the adapter protein ankyrin, recent studies in Drosophila have established that spectrin can also assemble through a direct ankyrin-independent mechanism. Here we tested specific regions of the spectrin molecule for a role in polarized assembly and function. First, we tested mutant beta-spectrins lacking ankyrin binding activity and/or the COOH-terminal pleckstrin homology (PH) domain for their assembly competence in midgut, salivary gland, and larval brain. Remarkably, three different assembly mechanisms operate in these three cell types: 1) neither site was required for assembly in salivary gland; 2) only the PH domain was required in midgut copper cells; and 3) either one of the two sites was sufficient for spectrin assembly in larval brain. Further characterization of the PH domain revealed that it binds strongly to lipid mixtures containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) but not phosphatidylinositol 3,4,5-trisphosphate. A K8Q mutation in the lipid binding region of the PH domain eliminated the PIP(2) interaction in vitro, yet the mutant protein retained full biological function in vivo. Reporter gene studies revealed that PIP(2) and the spectrin PH domain codistribute with one another in cells but not with authentic wild type alphabeta-spectrin. Thus, it appears that the PH domain imparts membrane targeting activity through a second mechanism that takes precedence over its PIP(2) binding activity.


Asunto(s)
Citoesqueleto/metabolismo , Espectrina/química , Espectrina/metabolismo , Animales , Ancirinas/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Membrana Celular/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Inmunoprecipitación , Larva/citología , Larva/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Mutación Puntual/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Glándulas Salivales/citología , Glándulas Salivales/metabolismo , Resonancia por Plasmón de Superficie , Transgenes
7.
Development ; 134(2): 273-84, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17121810

RESUMEN

alpha- and beta-Spectrin are major components of a submembrane cytoskeletal network connecting actin filaments to integral plasma membrane proteins. Besides its structural role in red blood cells, the Spectrin network is thought to function in non-erythroid cells during protein targeting and membrane domain formation. Here, we demonstrate that beta-Spectrin is required in neurons for proper midline axon guidance in the Drosophila embryonic CNS. In beta-spectrin mutants many axons inappropriately cross the CNS midline, suggesting a role for beta-Spectrin in midline repulsion. Surprisingly, neither the Ankyrin-binding nor the pleckstrin homology (PH) domains of beta-Spectrin are required for accurate guidance decisions. alpha-Spectrin is dependent upon beta-Spectrin for its normal subcellular localization and/or maintenance, whereas alpha-spectrin mutants exhibit a redistribution of beta-Spectrin to the axon scaffold. beta-spectrin mutants show specific dose-dependent genetic interactions with the midline repellent slit and its neuronal receptor roundabout (robo), but not with other guidance molecules. The results suggest that beta-Spectrin contributes to midline repulsion through the regulation of Slit-Robo pathway components. We propose that the Spectrin network is playing a role independently of Ankyrin in the establishment and/or maintenance of specialized membrane domains containing guidance molecules that ensure the fidelity of axon repulsion at the midline.


Asunto(s)
Ancirinas/metabolismo , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Drosophila/metabolismo , Espectrina/metabolismo , Animales , Animales Modificados Genéticamente , Ancirinas/genética , Axones/metabolismo , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Femenino , Genes de Insecto , Masculino , Mutación , Estructura Terciaria de Proteína , Espectrina/química , Espectrina/genética
8.
J Membr Biol ; 211(3): 151-61, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17091212

RESUMEN

Membrane transporters precisely regulate which molecules cross the plasma membrane and when they can cross. In many cases it is also important to regulate where substances can cross the plasma membrane. Consequently, cells have evolved mechanisms to confine and stabilize membrane transport proteins within specific subdomains of the plasma membrane. A number of different transporters (including ion pumps, channels and exchangers) are known to physically associate with the spectrin cytoskeleton, a submembrane complex of spectrin and ankyrin. These proteins form a protein scaffold that assembles within discrete subdomains of the plasma membrane in polarized cells. Recent genetic studies in humans and model organisms have provided the opportunity to test the hypothesis that the spectrin cytoskeleton has a direct role in restricting transporters to specialized domains. Remarkably, genetic defects in spectrin and ankyrin can produce effects on cell physiology that are comparable to knockouts of the transporters themselves.


Asunto(s)
Transporte Biológico/fisiología , Membrana Celular/fisiología , Citoesqueleto/fisiología , Espectrina/fisiología , Sistema de Transporte de Aminoácidos X-AG/fisiología , Animales , Ancirinas/fisiología , Citoesqueleto/química , Drosophila , Humanos , Modelos Biológicos , Miocitos Cardíacos/fisiología , Neuronas/fisiología , Espectrina/análisis , Espectrina/genética , Canales Aniónicos Dependientes del Voltaje/fisiología
9.
J Cell Biol ; 175(2): 325-35, 2006 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17060500

RESUMEN

Prevailing models place spectrin downstream of ankyrin in a pathway of assembly and function in polarized cells. We used a transgene rescue strategy in Drosophila melanogaster to test contributions of four specific functional sites in beta spectrin to its assembly and function. (1) Removal of the pleckstrin homology domain blocked polarized spectrin assembly in midgut epithelial cells and was usually lethal. (2) A point mutation in the tetramer formation site, modeled after a hereditary elliptocytosis mutation in human erythrocyte spectrin, had no detectable effect on function. (3) Replacement of repetitive segments 4-11 of beta spectrin with repeats 2-9 of alpha spectrin abolished function but did not prevent polarized assembly. (4) Removal of the putative ankyrin-binding site had an unexpectedly mild phenotype with no detectable effect on spectrin targeting to the plasma membrane. The results suggest an alternate pathway in which spectrin directs ankyrin assembly and in which some important functions of spectrin are independent of ankyrin.


Asunto(s)
Ancirinas/metabolismo , Citoesqueleto/metabolismo , Drosophila/metabolismo , Transducción de Señal , Espectrina/fisiología , Animales , Ancirinas/genética , Western Blotting , Membrana Celular , Cruzamientos Genéticos , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliales/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Mutación , Fenotipo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transgenes
10.
Int J Biochem Cell Biol ; 36(5): 745-52, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15061126

RESUMEN

Copper cells in the Drosophila midgut were originally named for their ability to accumulate dietary copper. Recent studies have uncovered a number of intriguing similarities between copper cells and the acid-producing gastric parietal cells of the mammalian stomach. In addition to their shared roles in stomach acidification, they share a peculiar invaginated morphology in which the apical cell surface is buried deep within the cytoplasm. These shared properties of morphology and function portend the identification of shared molecular mechanisms that account for their specialized roles in digestive physiology.


Asunto(s)
Cobre/metabolismo , Drosophila/citología , Ácido Gástrico/metabolismo , Estómago/citología , Animales , Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mucosa Gástrica/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Larva/anatomía & histología , Larva/metabolismo , Mamíferos/anatomía & histología , Mamíferos/metabolismo , Células Parietales Gástricas/metabolismo , Células Parietales Gástricas/ultraestructura , Estómago/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA