Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542287

RESUMEN

The encounter between dental biofilm and neutrophils in periodontitis remains elusive, although it apparently plays a crucial role in the periodontal pathology and constitutes a key topic of periodontology. Dental biofilm and neutrophils were isolated from orally healthy persons and patients with periodontitis. We investigated biofilm and its particle-shedding phenomenon with electron microscopy and nanoparticle tracking analysis (NTA); biofilm shedding-neutrophil interactions were examined ex vivo with epi-fluorescence microscopy. For this purpose, we used acellular dental biofilm shedding, purified lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA) as activators, and the interleukin 8 receptor beta (CXCR2) inhibitor and the anti-interleukin 8 receptor alpha (CXCR1) antibody as modulators. The shedding of acellular dental biofilms overwhelmingly consists of bacterial extracellular vesicles (BEVs). The latter induced the moderate formation of neutrophil extracellular traps (NETs) in orally healthy subjects and a strong formation in patients with periodontitis. A CXCR2 inhibitor and an anti-CXCR1 antibody had a minor effect on NET formation. Neutrophils from patients with periodontitis exhibited NET hyper-responsiveness. BEVs were stronger inducers of NET formation than purified LPS and PMA. A plateau of neutrophil responsiveness is reached above the age of 40 years, indicating the abrupt switch of maladaptive trained immunity (TI) into the activated modus. Our results suggest that dental biofilms consist of and disseminate immense amounts of outer membrane vesicles (OMVs), which initiate NET formation via a non-canonical cytosolic LPS/caspase-4/11/Gasdermin D pathway. This modus of NET formation is independent of neutrophil elastase (NE), myeloperoxidase (MPO), peptidylarginine deiminase 4 (PAD4), and toll-like receptors (TLR). In periodontitis, the hyper-responsiveness of neutrophils to BEVs and the increased NET formation appear to be a consequence of TI.


Asunto(s)
Trampas Extracelulares , Periodontitis , Humanos , Adulto , Neutrófilos/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Trampas Extracelulares/metabolismo , Periodontitis/metabolismo , Biopelículas
2.
Nanoscale ; 16(14): 7145-7153, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38502112

RESUMEN

The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 µm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 µm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.


Asunto(s)
Giardia lamblia , Giardiasis , Animales , Humanos , Giardia lamblia/metabolismo , Trofozoítos/metabolismo , Giardiasis/metabolismo , Orgánulos , Análisis Espectral
3.
Cells ; 11(18)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36139500

RESUMEN

Importing proteins into the endoplasmic reticulum (ER) is essential for about 30% of the human proteome. It involves the targeting of precursor proteins to the ER and their insertion into or translocation across the ER membrane. Furthermore, it relies on signals in the precursor polypeptides and components, which read the signals and facilitate their targeting to a protein-conducting channel in the ER membrane, the Sec61 complex. Compared to the SRP- and TRC-dependent pathways, little is known about the SRP-independent/SND pathway. Our aim was to identify additional components and characterize the client spectrum of the human SND pathway. The established strategy of combining the depletion of the central hSnd2 component from HeLa cells with proteomic and differential protein abundance analysis was used. The SRP and TRC targeting pathways were analyzed in comparison. TMEM109 was characterized as hSnd3. Unlike SRP but similar to TRC, the SND clients are predominantly membrane proteins with N-terminal, central, or C-terminal targeting signals.


Asunto(s)
Proteómica , Partícula de Reconocimiento de Señal , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Canales de Translocación SEC/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
4.
Arch Oral Biol ; 136: 105388, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35257940

RESUMEN

OBJECTIVE: The aim of the present in-situ study was to investigate anti-adherent properties of mouthrinses containing hydroxyapatite (HAP) nanoparticles on oral biofilm formation. DESIGN: Biofilm was formed for 48 h on bovine enamel or dentine specimens that were fixed to maxillary splints and worn intraoral by six volunteers. During biofilm formation, rinsing was performed with sterile water, HAP (5%) or chlorhexidine (0.2%) according to two different rinsing protocols in order to assess substantivity. Scanning electron microscopy was used to investigate biofilm coverage of specimens, biofilm thickness and morphology. In addition, saliva samples were collected and analysed with transmission electron microscopy. RESULTS: Rinsing with sterile water or HAP resulted in 2.1 or 2.3 µm thick biofilms, respectively, covering more than half of specimen' surfaces. Despite single deposits of nanoparticles in saliva and biofilm, HAP did not inhibit biofilm formation. Chlorhexidine on the other hand significantly reduced biofilm thickness and coverage. CONCLUSIONS: Mouthrinses containing HAP nanoparticles showed no anti-adherent effects during 48 h of biofilm formation in-situ.


Asunto(s)
Clorhexidina , Durapatita , Animales , Biopelículas , Bovinos , Clorhexidina/farmacología , Esmalte Dental , Durapatita/farmacología , Humanos , Saliva
5.
ACS Biomater Sci Eng ; 8(4): 1476-1485, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35263544

RESUMEN

Research into materials for medical application draws inspiration from naturally occurring or synthesized surfaces, just like many other research directions. For medical application of materials, particular attention has to be paid to biocompatibility, osseointegration, and bacterial adhesion behavior. To understand their properties and behavior, experimental studies with natural materials such as teeth are strongly required. The results, however, may be highly case-dependent because natural surfaces have the disadvantage of being subject to wide variations, for instance in their chemical composition, structure, morphology, roughness, and porosity. A synthetic surface which mimics enamel in its performance with respect to bacterial adhesion and biocompatibility would, therefore, facilitate systematic studies much better. In this study, we discuss the possibility of using hydroxyapatite (HAp) pellets to simulate the surfaces of teeth and show the possibility and limitations of using a model surface. We performed single-cell force spectroscopy with single Staphylococcus aureus cells to measure adhesion-related parameters such as adhesion force and rupture length of cell wall proteins binding to HAp and enamel. We also examine the influence of blood plasma and saliva on the adhesion properties of S. aureus. The results of these measurements are matched to water wettability, elemental composition of the samples, and the change in the macromolecules adsorbed over time on the surface. We found that the adhesion properties of S. aureus were similar on HAp and enamel samples under all conditions: Significant decreases in adhesion strength were found equally in the presence of saliva or blood plasma on both surfaces. We therefore conclude that HAp pellets are a good alternative for natural dental material. This is especially true when slight variations in the physicochemical properties of the natural materials may affect the experimental series.


Asunto(s)
Durapatita , Staphylococcus aureus , Esmalte Dental , Durapatita/química , Durapatita/metabolismo , Durapatita/farmacología , Análisis Espectral , Staphylococcus aureus/metabolismo , Propiedades de Superficie
6.
Proteomics Clin Appl ; 16(3): e2100109, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35195368

RESUMEN

PURPOSE: The use of dental restorative materials is a routine task in clinical dentistry. Upon exposure to the oral cavity, continuous adsorption of salivary proteins and other macromolecules to all surfaces occurs, representing the first step in dental biofilm formation. Different physico-chemical properties of substrate materials potentially influence the composition of the initial biofilm, termed pellicle. This study aimed at characterizing and comparing the individual proteomic composition of the 3-min pellicle formed on bovine enamel and six restorative materials. EXPERIMENTAL DESIGN: After chemical elution, pellicle proteins were identified by nano-LC-HR-MS/MS. Proteomic profiles were analyzed in terms of molecular weights, isoelectric points, molecular functions and compared to saliva to reveal substrate material-specific adsorption patterns. RESULTS: A total of 1348 different pellicle proteins were identified, with 187-686 proteins in individual 3-min pellicles. Unexpectedly, this yielded quite similar distribution patterns independent of the substrate materials. Furthermore, overall similar fold changes were obtained for the major part of commonly enriched or depleted proteins in the pellicles. CONCLUSIONS AND CLINICAL RELEVANCE: The current results point to a minor role of the substrate material on the proteomic composition of the 3-min pellicle and represent core data for understanding the complex surface interactions in the oral cavity.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Animales , Bovinos , Película Dental , Saliva/química , Proteínas y Péptidos Salivales
7.
Microorganisms ; 9(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34835339

RESUMEN

Caries is one of the most prevalent diseases worldwide, which is caused by the degradation of the tooth enamel surface. In earlier research the opportunistic pathogen Candida albicans has been associated with the formation of caries in children. Colonization of teeth by C. albicans starts with the initial adhesion of individual yeast cells to the tooth enamel surface. In this study, we visualized the initial colonization of C. albicans yeast cells on pellicle-covered enamel by scanning electron microscopy. To quantitatively unravel the initial adhesion strength, we applied fluidic force microscopy-based single-cell force spectroscopy to examine the key adhesion parameters adhesion force, rupture length and de-adhesion work. We analyzed single saliva-treated or untreated yeast cells on tooth enamel specimens with or without salivary pellicle. Under all tested conditions, adhesion forces in the lower nanonewton range were determined. Furthermore, we have found that all adhesion parameters were enhanced on the pellicle-covered compared to the uncovered enamel. Our data suggest that initial adhesion occurs through a strong interaction between yeast cell wall-associated adhesins and the salivary pellicle. Future SCFS studies may show whether specific management of the salivary pellicle reduces the adhesion of C. albicans on teeth and thus contributes to caries prophylaxis.

8.
Molecules ; 26(12)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208277

RESUMEN

In human cells, one-third of all polypeptides enter the secretory pathway at the endoplasmic reticulum (ER). The specificity and efficiency of this process are guaranteed by targeting of mRNAs and/or polypeptides to the ER membrane. Cytosolic SRP and its receptor in the ER membrane facilitate the cotranslational targeting of most ribosome-nascent precursor polypeptide chain (RNC) complexes together with the respective mRNAs to the Sec61 complex in the ER membrane. Alternatively, fully synthesized precursor polypeptides are targeted to the ER membrane post-translationally by either the TRC, SND, or PEX19/3 pathway. Furthermore, there is targeting of mRNAs to the ER membrane, which does not involve SRP but involves mRNA- or RNC-binding proteins on the ER surface, such as RRBP1 or KTN1. Traditionally, the targeting reactions were studied in cell-free or cellular assays, which focus on a single precursor polypeptide and allow the conclusion of whether a certain precursor can use a certain pathway. Recently, cellular approaches such as proximity-based ribosome profiling or quantitative proteomics were employed to address the question of which precursors use certain pathways under physiological conditions. Here, we combined siRNA-mediated depletion of putative mRNA receptors in HeLa cells with label-free quantitative proteomics and differential protein abundance analysis to characterize RRBP1- or KTN1-involving precursors and to identify possible genetic interactions between the various targeting pathways. Furthermore, we discuss the possible implications on the so-called TIGER domains and critically discuss the pros and cons of this experimental approach.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , ARN Mensajero/metabolismo , Proteínas Portadoras/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteoma/análisis , Proteoma/metabolismo , ARN Mensajero/genética
10.
Proteomics Clin Appl ; 14(3): e1900090, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32237277

RESUMEN

PURPOSE: Dental pellicle formation starts instantaneously after oral hygiene due to the adsorption of salivary proteins to all orally exposed surfaces. The pellicle acts as a physiological mediator, protects the tooth surface from mechanical damages and reduces acid-induced enamel demineralization. The aim of this pilot study is to identify and characterize individual proteomic profiles of the initial pellicle formed on dental enamel and to compare the profiles with the corresponding saliva to analyze specific adsorption patterns occurring during pellicle formation. EXPERIMENTAL DESIGN: The 3-min pellicle of five subjects formed in situ on bovine enamel is eluted chemically and analyzed separately by nano-mass spectrometry. The analysis of the corresponding saliva is conducted in parallel. RESULTS: Up to 498 pellicle proteins and up to 1032 salivary proteins are identified on an individual level. Comparison of the salivary and pellicle protein profiles demonstrates the pellicle formation to be highly individual. Nineteen proteins are significantly enriched in the 3-min pellicle of all subjects and 22 proteins are significantly depleted indicating that pellicle formation relies on selective adsorption. CONCLUSIONS AND CLINICAL RELEVANCE: The short-term enamel pellicle is composed of several hundreds of adsorbed salivary proteins and reveals a highly individual proteomic profile.


Asunto(s)
Película Dental/crecimiento & desarrollo , Proteómica , Adulto , Película Dental/metabolismo , Femenino , Humanos , Masculino , Proyectos Piloto , Saliva/metabolismo , Factores de Tiempo , Adulto Joven
11.
FEBS J ; 287(21): 4612-4640, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32133789

RESUMEN

In mammalian cells, one-third of all polypeptides are integrated into the membrane or translocated into the lumen of the endoplasmic reticulum (ER) via the Sec61 channel. While the Sec61 complex facilitates ER import of most precursor polypeptides, the Sec61-associated Sec62/Sec63 complex supports ER import in a substrate-specific manner. So far, mainly posttranslationally imported precursors and the two cotranslationally imported precursors of ERj3 and prion protein were found to depend on the Sec62/Sec63 complex in vitro. Therefore, we determined the rules for engagement of Sec62/Sec63 in ER import in intact human cells using a recently established unbiased proteomics approach. In addition to confirming ERj3, we identified 22 novel Sec62/Sec63 substrates under these in vivo-like conditions. As a common feature, those previously unknown substrates share signal peptides (SP) with comparatively longer but less hydrophobic hydrophobic region of SP and lower carboxy-terminal region of SP (C-region) polarity. Further analyses with four substrates, and ERj3 in particular, revealed the combination of a slowly gating SP and a downstream translocation-disruptive positively charged cluster of amino acid residues as decisive for the Sec62/Sec63 requirement. In the case of ERj3, these features were found to be responsible for an additional immunoglobulin heavy-chain binding protein (BiP) requirement and to correlate with sensitivity toward the Sec61-channel inhibitor CAM741. Thus, the human Sec62/Sec63 complex may support Sec61-channel opening for precursor polypeptides with slowly gating SPs by direct interaction with the cytosolic amino-terminal peptide of Sec61α or via recruitment of BiP and its interaction with the ER-lumenal loop 7 of Sec61α. These novel insights into the mechanism of human ER protein import contribute to our understanding of the etiology of SEC63-linked polycystic liver disease. DATABASES: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository (http://www.ebi.ac.uk/pride/archive/projects/Identifiers) with the dataset identifiers: PXD008178, PXD011993, and PXD012078. Supplementary information was deposited at Mendeley Data (https://data.mendeley.com/datasets/6s5hn73jcv/2).


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Señales de Clasificación de Proteína , Proteínas de Unión al ARN/metabolismo , Animales , Células HEK293 , Proteínas del Choque Térmico HSP40/metabolismo , Células HeLa , Humanos , Proteínas de Transporte de Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/genética , Transporte de Proteínas , Proteoma/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Especificidad por Sustrato
12.
Channels (Austin) ; 14(1): 28-44, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32013668

RESUMEN

In mammalian cells, one-third of all polypeptides is transported into or through the ER-membrane via the Sec61-channel. While the Sec61-complex facilitates the transport of all polypeptides with amino-terminal signal peptides (SP) or SP-equivalent transmembrane helices (TMH), the translocating chain-associated membrane protein (now termed TRAM1) was proposed to support transport of a subset of precursors. To identify possible determinants of TRAM1 substrate specificity, we systematically identified TRAM1-dependent precursors by analyzing cellular protein abundance changes upon TRAM1 depletion in HeLa cells using quantitative label-free proteomics. In contrast to previous analysis after TRAP depletion, SP and TMH analysis of TRAM1 clients did not reveal any distinguishing features that could explain its putative substrate specificity. To further address the TRAM1 mechanism, live-cell calcium imaging was carried out after TRAM1 depletion in HeLa cells. In additional contrast to previous analysis after TRAP depletion, TRAM1 depletion did not affect calcium leakage from the ER. Thus, TRAM1 does not appear to act as SP- or TMH-receptor on the ER-membrane's cytosolic face and does not appear to affect the open probability of the Sec61-channel. It may rather play a supportive role in protein transport, such as making the phospholipid bilayer conducive for accepting SP and TMH in the vicinity of the lateral gate of the Sec61-channel.Abbreviations: ER, endoplasmic reticulum; OST, oligosaccharyltransferase; RAMP, ribosome-associated membrane protein; SP, signal peptide; SR, SRP-receptor; SRP, signal recognition particle; TMH, signal peptide-equivalent transmembrane helix; TRAM, translocating chain-associated membrane protein; TRAP, translocon-associated protein.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Fosfolípidos/metabolismo , Canales de Translocación SEC/metabolismo , Citosol/metabolismo , Células HeLa , Humanos , Membrana Dobles de Lípidos/química , Glicoproteínas de Membrana/genética , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas/fisiología , Proteómica
13.
Biol Open ; 8(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30745438

RESUMEN

The Sec61-complex as a dynamic polypeptide-conducting channel mediates protein transport into the human endoplasmic reticulum (ER) with the help of additional components. ER membrane resident Hsp40-type co-chaperone Sec63 as well as the ER lumenal Hsp70-type chaperone BiP were proposed to facilitate channel opening in a precursor-specific fashion. Here, we report on their rules of engagement in ER import of the prion protein (PrP) by addressing sixteen PrP-related variants which differ in their signal peptides and mature parts, respectively. Transport into the ER of semi-permeabilized human cells was analyzed upon depletion of the components by siRNA- or toxin-treatment. The results are consistent with the view of separate functions of BiP and Sec63 and strongly suggest that the co-chaperone/chaperone-pair facilitates Sec61 channel gating to the open state when precursor polypeptides with weak signal peptides in combination with detrimental features in the adjacent mature part were targeted. Thus, we expand the view of chaperone-mediated Sec61 channel gating by providing a novel example of a polybasic motif that interferes with signal peptide-mediated Sec61 channel gating. This article has an associated First Person interview with the first author of the paper.

14.
Colloids Surf B Biointerfaces ; 174: 246-251, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469045

RESUMEN

The salivary pellicle is a thin acellular film formed on orally exposed surfaces by adsorption of macromolecules from the oral fluids and serves as a protective layer in the maintenance of oral health. Pellicle thickness measurements are a central tool helping to understand how exogenous manipulations may influence pellicle formation. This is of particular importance for the investigation of new preventive and therapeutic approaches. In the present study we determined the kinetics of the in situ pellicle thickness formation at different intraoral sites and investigated how pellicle formation occurs in different individuals. To address the kinetic aspect, the thickness of the in situ pellicle was determined after formation periods of 3 min, 30 min and 120 min. The thickness of the pellicle was either measured on silicon wafers by ellipsometry or on bovine enamel by transmission electron microscopy. We found a physiologically important rapid pellicle formation phase within the first minutes and a slow pellicle formation phase between 30 min and 120 min. Furthermore, our results identify significant inter-individual differences both for the pellicle thickness and for the formation kinetics, indicating the consideration of individual-specific differences of the pellicle layer as an important aspect for future studies.


Asunto(s)
Esmalte Dental/química , Película Dental/química , Saliva/química , Compuestos de Silicona/química , Adulto , Animales , Bovinos , Femenino , Humanos , Cinética , Masculino
15.
Nat Commun ; 9(1): 3765, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217974

RESUMEN

In mammalian cells, one-third of all polypeptides are transported into or across the ER membrane via the Sec61 channel. While the Sec61 complex facilitates translocation of all polypeptides with amino-terminal signal peptides (SP) or transmembrane helices, the Sec61-auxiliary translocon-associated protein (TRAP) complex supports translocation of only a subset of precursors. To characterize determinants of TRAP substrate specificity, we here systematically identify TRAP-dependent precursors by analyzing cellular protein abundance changes upon TRAP depletion using quantitative label-free proteomics. The results are validated in independent experiments by western blotting, quantitative RT-PCR, and complementation analysis. The SPs of TRAP clients exhibit above-average glycine-plus-proline content and below-average hydrophobicity as distinguishing features. Thus, TRAP may act as SP receptor on the ER membrane's cytosolic face, recognizing precursor polypeptides with SPs of high glycine-plus-proline content and/or low hydrophobicity, and triggering substrate-specific opening of the Sec61 channel through interactions with the ER-lumenal hinge of Sec61α.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Canales de Translocación SEC/metabolismo , Western Blotting , Glicina , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Prolina , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad por Sustrato
16.
Nat Commun ; 8: 14516, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28218252

RESUMEN

In eukaryotic cells, one-third of all proteins must be transported across or inserted into the endoplasmic reticulum (ER) membrane by the ER protein translocon. The translocon-associated protein (TRAP) complex is an integral component of the translocon, assisting the Sec61 protein-conducting channel by regulating signal sequence and transmembrane helix insertion in a substrate-dependent manner. Here we use cryo-electron tomography (CET) to study the structure of the native translocon in evolutionarily divergent organisms and disease-linked TRAP mutant fibroblasts from human patients. The structural differences detected by subtomogram analysis form a basis for dissecting the molecular organization of the TRAP complex. We assign positions to the four TRAP subunits within the complex, providing insights into their individual functions. The revealed molecular architecture of a central translocon component advances our understanding of membrane protein biogenesis and sheds light on the role of TRAP in human congenital disorders of glycosylation.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Glicoproteínas de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Células Cultivadas , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Retículo Endoplásmico/metabolismo , Fibroblastos/metabolismo , Glicosilación , Células HeLa , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Mutación , Conformación Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/química , Receptores de Péptidos/genética , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
17.
Nature ; 540(7631): 134-138, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27905431

RESUMEN

In eukaryotes, up to one-third of cellular proteins are targeted to the endoplasmic reticulum, where they undergo folding, processing, sorting and trafficking to subsequent endomembrane compartments. Targeting to the endoplasmic reticulum has been shown to occur co-translationally by the signal recognition particle (SRP) pathway or post-translationally by the mammalian transmembrane recognition complex of 40 kDa (TRC40) and homologous yeast guided entry of tail-anchored proteins (GET) pathways. Despite the range of proteins that can be catered for by these two pathways, many proteins are still known to be independent of both SRP and GET, so there seems to be a critical need for an additional dedicated pathway for endoplasmic reticulum relay. We set out to uncover additional targeting proteins using unbiased high-content screening approaches. To this end, we performed a systematic visual screen using the yeast Saccharomyces cerevisiae, and uncovered three uncharacterized proteins whose loss affected targeting. We suggest that these proteins work together and demonstrate that they function in parallel with SRP and GET to target a broad range of substrates to the endoplasmic reticulum. The three proteins, which we name Snd1, Snd2 and Snd3 (for SRP-independent targeting), can synthetically compensate for the loss of both the SRP and GET pathways, and act as a backup targeting system. This explains why it has previously been difficult to demonstrate complete loss of targeting for some substrates. Our discovery thus puts in place an essential piece of the endoplasmic reticulum targeting puzzle, highlighting how the targeting apparatus of the eukaryotic cell is robust, interlinked and flexible.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Dominios Proteicos , Señales de Clasificación de Proteína , Transporte de Proteínas , Proteínas Ribosómicas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo
18.
Biochim Biophys Acta ; 1860(10): 2122-9, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27373685

RESUMEN

BACKGROUND: In eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex. SCOPE OF REVIEW: The aim of this review is to summarize the current structural knowledge about protein translocon components in mammals. MAJOR CONCLUSIONS: Various structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation. GENERAL SIGNIFICANCE: The protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.


Asunto(s)
Retículo Endoplásmico/metabolismo , Transporte de Proteínas/genética , Ribosomas/genética , Canales de Translocación SEC/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografía por Rayos X , Retículo Endoplásmico/genética , Humanos , Ribosomas/ultraestructura , Canales de Translocación SEC/metabolismo , Tomografía
19.
J Biol Chem ; 290(30): 18621-35, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26085089

RESUMEN

In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic polypeptide-conducting channel, the heterotrimeric Sec61 complex. Previous work has characterized the Sec61 complex as a potential ER Ca(2+) leak channel in HeLa cells and identified ER lumenal molecular chaperone immunoglobulin heavy-chain-binding protein (BiP) as limiting Ca(2+) leakage via the open Sec61 channel by facilitating channel closing. This BiP activity involves binding of BiP to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. Of note, the Y344H mutation destroys the BiP binding site and causes pancreatic ß-cell apoptosis and diabetes in mice. Here, we systematically depleted HeLa cells of the BiP co-chaperones by siRNA-mediated gene silencing and used live cell Ca(2+) imaging to monitor the effects on ER Ca(2+) leakage. Depletion of either one of the ER lumenal BiP co-chaperones, ERj3 and ERj6, but not the ER membrane-resident co-chaperones (such as Sec63 protein, which assists BiP in Sec61 channel opening) led to increased Ca(2+) leakage via Sec6 complex, thereby phenocopying the effect of BiP depletion. Thus, BiP facilitates Sec61 channel closure (i.e. limits ER Ca(2+) leakage) via the Sec61 channel with the help of ERj3 and ERj6. Interestingly, deletion of ERj6 causes pancreatic ß-cell failure and diabetes in mice and humans. We suggest that co-chaperone-controlled gating of the Sec61 channel by BiP is particularly important for cells, which are highly active in protein secretion, and that breakdown of this regulatory mechanism can cause apoptosis and disease.


Asunto(s)
Diabetes Mellitus/genética , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Señalización del Calcio/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Chaperón BiP del Retículo Endoplásmico , Silenciador del Gen , Proteínas del Choque Térmico HSP40/genética , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Transporte de Proteínas , Canales de Translocación SEC
20.
J Mol Biol ; 427(6 Pt A): 1159-75, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24968227

RESUMEN

Protein transport into the endoplasmic reticulum (ER) is essential for all eukaryotic cells and evolutionary related to protein transport into and across the cytoplasmic membrane of eubacteria and archaea. It is based on amino-terminal signal peptides in the precursor polypeptides plus various transport components in cytosol plus ER and can occur either cotranslationally or posttranslationally. The two mechanisms merge at the heterotrimeric Sec61 complex in the ER membrane, which forms an aqueous polypeptide-conducting channel. Since the mammalian ER is also the main intracellular calcium storage organelle, the Sec61 complex is tightly regulated in its dynamics between the open and closed conformations by various ligands, such as precursor polypeptides at the cytosolic face and the Hsp70-type molecular chaperone BiP at the ER lumenal face (Hsp, heat shock protein). Furthermore, BiP binding to the incoming precursor polypeptide contributes to unidirectionality and efficiency of transport. Recent insights into the structural dynamics of the Sec61 complex and related complexes in eubacteria and archaea have various mechanistic and functional implications.


Asunto(s)
Retículo Endoplásmico/metabolismo , Secuencia de Aminoácidos , Animales , Citosol/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Canales de Translocación SEC , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...