Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
2.
Nat Commun ; 14(1): 2401, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37100770

RESUMEN

The recognition of antigenic peptide-MHC (pMHC) molecules by T-cell receptors (TCR) initiates the T-cell mediated immune response. Structural characterization is key for understanding the specificity of TCR-pMHC interactions and informing the development of therapeutics. Despite the rapid rise of single particle cryoelectron microscopy (cryoEM), x-ray crystallography has remained the preferred method for structure determination of TCR-pMHC complexes. Here, we report cryoEM structures of two distinct full-length α/ß TCR-CD3 complexes bound to their pMHC ligand, the cancer-testis antigen HLA-A2/MAGEA4 (230-239). We also determined cryoEM structures of pMHCs containing MAGEA4 (230-239) peptide and the closely related MAGEA8 (232-241) peptide in the absence of TCR, which provided a structural explanation for the MAGEA4 preference displayed by the TCRs. These findings provide insights into the TCR recognition of a clinically relevant cancer antigen and demonstrate the utility of cryoEM for high-resolution structural analysis of TCR-pMHC interactions.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Microscopía por Crioelectrón , Unión Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Péptidos/química , Antígenos de Histocompatibilidad/metabolismo , Complejo Mayor de Histocompatibilidad
3.
Cancer Immunol Res ; 10(10): 1190-1209, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-35895745

RESUMEN

Assessment of immune-cell subsets within the tumor immune microenvironment is a powerful approach to better understand cancer immunotherapy responses. However, the use of biopsies to assess the tumor immune microenvironment poses challenges, including the potential for sampling error, restricted sampling over time, and inaccessibility of some tissues/organs, as well as the fact that single biopsy analyses do not reflect discordance across multiple intrapatient tumor lesions. Immuno-positron emission tomography (PET) presents a promising translational imaging approach to address the limitations and assess changes in the tumor microenvironment. We have developed 89Zr-DFO-REGN5054, a fully human CD8A-specific antibody conjugate, to assess CD8+ tumor-infiltrating lymphocytes (TIL) pre- and posttherapy. We used multiple assays, including in vitro T-cell activation, proliferation, and cytokine production, and in vivo viral clearance and CD8 receptor occupancy, to demonstrate that REGN5054 has minimal impact on T-cell activity. Preclinical immuno-PET studies demonstrated that 89Zr-DFO-REGN5054 specifically detected CD8+ T cells in lymphoid tissues of CD8-genetically humanized immunocompetent mice (VelociT mice) and discerned therapy-induced changes in CD8+ TILs in two models of response to a CD20xCD3 T-cell activating bispecific antibody (REGN1979, odronextamab). Toxicology studies in cynomolgus monkeys showed no overt toxicity, and immuno-PET imaging in cynomolgus monkeys demonstrated dose-dependent clearance and specific targeting to lymphoid tissues. This work supports the clinical investigation of 89Zr-DFO-REGN5054 to monitor T-cell responses in patients undergoing cancer immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Linfocitos T CD8-positivos , Citocinas/uso terapéutico , Humanos , Linfocitos Infiltrantes de Tumor , Macaca fascicularis , Ratones , Tomografía de Emisión de Positrones/métodos , Radioisótopos , Microambiente Tumoral , Circonio
4.
Sci Rep ; 11(1): 14397, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257348

RESUMEN

T-cell-redirecting bispecific antibodies have emerged as a new class of therapeutic agents designed to simultaneously bind to T cells via CD3 and to tumor cells via tumor-cell-specific antigens (TSA), inducing T-cell-mediated killing of tumor cells. The promising preclinical and clinical efficacy of TSAxCD3 antibodies is often accompanied by toxicities such as cytokine release syndrome due to T-cell activation. How the efficacy and toxicity profile of the TSAxCD3 bispecific antibodies depends on the binding affinity to CD3 remains unclear. Here, we evaluate bispecific antibodies that were engineered to have a range of CD3 affinities, while retaining the same binding affinity for the selected tumor antigen. These agents were tested for their ability to kill tumor cells in vitro, and their biodistribution, serum half-life, and anti-tumor activity in vivo. Remarkably, by altering the binding affinity for CD3 alone, we can generate bispecific antibodies that maintain potent killing of TSA + tumor cells but display differential patterns of cytokine release, pharmacokinetics, and biodistribution. Therefore, tuning CD3 affinity is a promising method to improve the therapeutic index of T-cell-engaging bispecific antibodies.


Asunto(s)
Anticuerpos Biespecíficos , Complejo CD3 , Citocinas , Citocinas/metabolismo , Activación de Linfocitos , Distribución Tisular
5.
J Immunother Cancer ; 9(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33483343

RESUMEN

BACKGROUND: Programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) blocking antibodies including cemiplimab have generated profound clinical activity across diverse cancer types. Tumorous PD-L1 expression, as assessed by immunohistochemistry (IHC), is an accepted predictive marker of response to therapy in some cancers. However, expression is often dynamic and heterogeneous, and therefore not reliably captured by IHC from tumor biopsies or archival samples. Thus, there is significant need for accurate whole-body quantification of PD-L1 levels. METHODS: We radiolabeled the novel human anti-PD-L1 antibody REGN3504 with zirconium-89 (89Zr) using the chelator p-SCN-Bn-Deferoxamine to enable non-invasive immuno-positron emission tomography (immuno-PET) of PD-L1 expression. PET imaging assessed the localization of 89Zr-REGN3504 to multiple human tumor xenografts. Mice genetically humanized for PD-1 and PD-L1 were used to assess the biodistribution of 89Zr-REGN3504 to normal tissues and the estimated human radiation dosimetry of 89Zr-REGN3504 was also determined. Pharmacokinetics of REGN3504 was assessed in monkeys. RESULTS: Clear localization of 89Zr-REGN3504 to human tumor xenografts was observed via PET imaging and ex vivo biodistribution studies demonstrated high (fourfold to sixfold) tumor:blood ratios. 89Zr-REGN3504 specifically localized to spleen and lymph nodes in the PD-1/PD-L1 humanized mice. 89Zr-REGN3504 immuno-PET accurately detected a significant reduction in splenic PD-L1 positive cells following systemic treatment with clodronate liposomes. Radiation dosimetry suggested absorbed doses would be within guidelines for other 89Zr radiolabeled, clinically used antibodies. Pharmacokinetics of REGN3504 was linear. CONCLUSION: This work supports the clinical translation of 89Zr-REGN3504 immuno-PET for the assessment of PD-L1 expression. Future clinical studies will aim to investigate the utility of 89Zr-REGN3504 immuno-PET for predicting and monitoring response to anti-PD-1 therapy.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagen , Radioisótopos/química , Circonio/química , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Estudios de Casos y Controles , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Haplorrinos , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Neoplasias/inmunología , Tomografía de Emisión de Positrones , Distribución Tisular
6.
Sci Transl Med ; 12(549)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581132

RESUMEN

Monoclonal antibodies that block the programmed cell death 1 (PD-1) checkpoint have revolutionized cancer immunotherapy. However, many major tumor types remain unresponsive to anti-PD-1 therapy, and even among responsive tumor types, most of the patients do not develop durable antitumor immunity. It has been shown that bispecific antibodies activate T cells by cross-linking the TCR/CD3 complex with a tumor-specific antigen (TSA). The class of TSAxCD3 bispecific antibodies have generated exciting results in early clinical trials. We have recently described another class of "costimulatory bispecifics" that cross-link a TSA to CD28 (TSAxCD28) and cooperate with TSAxCD3 bispecifics. Here, we demonstrate that these TSAxCD28 bispecifics (one specific for prostate cancer and the other for epithelial tumors) can also synergize with the broader anti-PD-1 approach and endow responsiveness-as well as long-term immune memory-against tumors that otherwise do not respond to anti-PD-1 alone. Unlike CD28 superagonists, which broadly activate T cells and induce cytokine storm, TSAxCD28 bispecifics display little or no toxicity when used alone or in combination with a PD-1 blocker in genetically humanized immunocompetent mouse models or in primates and thus may provide a well-tolerated and "off the shelf" combination approach with PD-1 immunotherapy that can markedly enhance antitumor efficacy.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Anticuerpos Biespecíficos/uso terapéutico , Antígenos CD28 , Humanos , Inmunoterapia , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1
7.
Sci Transl Med ; 12(525)2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31915305

RESUMEN

T cell activation is initiated upon binding of the T cell receptor (TCR)/CD3 complex to peptide-major histocompatibility complexes ("signal 1"); activation is enhanced by engagement of a second "costimulatory" receptor, such as the CD28 receptor on T cells binding to its cognate ligand(s) on the target cell ("signal 2"). CD3-based bispecific antibodies act by replacing conventional signal 1, linking T cells to tumor cells by binding a tumor-specific antigen (TSA) with one arm of the bispecific and bridging to TCR/CD3 with the other. Although some of these so-called TSAxCD3 bispecifics have demonstrated promising antitumor efficacy in patients with cancer, their activity remains to be optimized. Here, we introduce a class of bispecific antibodies that mimic signal 2 by bridging TSA to the costimulatory CD28 receptor on T cells. We term these TSAxCD28 bispecifics and describe two such bispecific antibodies: one specific for ovarian and the other for prostate cancer antigens. Unlike CD28 superagonists, which broadly activate T cells and resulted in profound toxicity in early clinical trials, these TSAxCD28 bispecifics show limited activity and no toxicity when used alone in genetically humanized immunocompetent mouse models or in primates. However, when combined with TSAxCD3 bispecifics, they enhance the artificial synapse between a T cell and its target cell, potentiate T cell activation, and markedly improve antitumor activity of CD3 bispecifics in a variety of xenogeneic and syngeneic tumor models. Combining this class of CD28-costimulatory bispecific antibodies with the emerging class of TSAxCD3 bispecifics may provide well-tolerated, off-the-shelf antibody therapies with robust antitumor efficacy.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Neoplasias/inmunología , Animales , Antígenos de Neoplasias/inmunología , Línea Celular Tumoral , Proliferación Celular , Citocinas/metabolismo , Citotoxicidad Inmunológica , Femenino , Células HEK293 , Humanos , Sinapsis Inmunológicas/metabolismo , Activación de Linfocitos/inmunología , Macaca fascicularis , Ratones , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Clin Cancer Res ; 26(6): 1408-1419, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31848185

RESUMEN

PURPOSE: Recent clinical data demonstrate that tumors harboring MET genetic alterations (exon 14 skip mutations and/or gene amplification) respond to small-molecule tyrosine kinase inhibitors, validating MET as a therapeutic target. Although antibody-mediated blockade of the MET pathway has not been successful in the clinic, the failures are likely the result of inadequate patient selection strategies as well as suboptimal antibody design. Thus, our goal was to generate a novel MET blocking antibody with enhanced efficacy. EXPERIMENTAL DESIGN: Here, we describe the activity of a biparatopic MET×MET antibody that recognizes two distinct epitopes in the MET Sema domain. We use a combination of in vitro assays and tumor models to characterize the effect of our antibody on MET signaling, MET intracellular trafficking, and the growth of MET-dependent cells/tumors. RESULTS: In MET-driven tumor models, our biparatopic antibody exhibits significantly better activity than either of the parental antibodies or the mixture of the two parental antibodies and outperforms several clinical-stage MET antibodies. Mechanistically, the biparatopic antibody inhibits MET recycling, thereby promoting lysosomal trafficking and degradation of MET. In contrast to the parental antibodies, the biparatopic antibody fails to activate MET-dependent biological responses, consistent with the observation that it recycles inefficiently and induces very transient downstream signaling. CONCLUSIONS: Our results provide strong support for the notion that biparatopic antibodies are a promising therapeutic modality, potentially having greater efficacy than that predicted from the properties of the parental antibodies.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Epítopos/inmunología , Amplificación de Genes , Neoplasias/terapia , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Línea Celular Tumoral , Epítopos/genética , Humanos , Ratones , Ratones SCID , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Infect Dis ; 218(suppl_5): S612-S626, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29860496

RESUMEN

Background: For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods: In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results: Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions: This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Glicoproteínas/inmunología , Cobayas , Células HEK293 , Humanos , Macaca mulatta , Masculino , Ratones
10.
J Biol Chem ; 286(12): 10744-54, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21252230

RESUMEN

The bakers' yeast Saccharomyces cerevisiae utilizes a high affinity Ca(2+) influx system (HACS) to survive assaults by mating pheromones, tunicamycin, and azole-class antifungal agents. HACS consists of two known subunits, Cch1 and Mid1, that are homologous and analogous to the catalytic α-subunits and regulatory α2δ-subunits of mammalian voltage-gated calcium channels, respectively. To search for additional subunits and regulators of HACS, a collection of gene knock-out mutants was screened for abnormal uptake of Ca(2+) after exposure to mating pheromone or to tunicamycin. The screen revealed that Ecm7 is required for HACS function in most conditions. Cycloheximide chase experiments showed that Ecm7 was stabilized by Mid1, and Mid1 was stabilized by Cch1 in non-signaling conditions, suggesting they all interact. Ecm7 is a member of the PMP-22/EMP/MP20/Claudin superfamily of transmembrane proteins that includes γ-subunits of voltage-gated calcium channels. Eleven additional members of this superfamily were identified in yeast, but none was required for HACS activity in response to the stimuli. Remarkably, many dozens of genes involved in vesicle-mediated trafficking and protein secretion were required to prevent spontaneous activation of HACS. Taken together, the findings suggest that HACS and calcineurin monitor performance of the membrane trafficking system in yeasts and coordinate compensatory processes. Conservation of this quality control system in Candida glabrata suggests that many pathogenic species of fungi may utilize HACS and calcineurin to resist azoles and other compounds that target membrane biosynthesis.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Azoles/farmacología , Canales de Calcio/genética , Candida/genética , Candida/metabolismo , Membrana Celular/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/fisiología , Estudio de Asociación del Genoma Completo/métodos , Transporte Iónico/efectos de los fármacos , Transporte Iónico/fisiología , Glicoproteínas de Membrana/genética , Estabilidad Proteica/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
J Biomol Screen ; 15(7): 766-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20639499

RESUMEN

In recent years, advances in structure-based drug design and the development of an impressive variety of high-throughput screening (HTS) assay formats have yielded an expanding list of protein-protein interaction inhibitors. Despite these advances, protein-protein interaction targets are still widely considered difficult to disrupt with small molecules. The authors present here the results from screening 220,017 compounds from the National Institute of Health's small-molecule library in a novel p53-hDM2 protein-protein interaction biosensor (PPIB) assay. The p53-hDM2 positional biosensor performed robustly and reproducibly throughout the high-content screening (HCS) campaign, and analysis of the multiparameter data from images of the 3 fluorescent channels enabled the authors to identify and eliminate compounds that were cytotoxic or fluorescent artifacts. The HCS campaign yielded 3 structurally related methylbenzo-naphthyridin-5-amine (MBNA) hits with IC(50)s between 30 and 50 microM in the p53-hDM2 PPIB. In HCT116 cells with wild-type (WT) p53, the MBNAs enhanced p53 protein levels, increased the expression of p53 target genes, caused a cell cycle arrest in G1, induced apoptosis, and inhibited cell proliferation with an IC(50) ~4 microM. The prototype disruptor of p53-hDM2 interactions Nutlin-3 was more potent than the MBNAs in the p53-hDM2 PPIB assay but produced equivalent biological results in HCT116 cells WT for p53. Unlike Nutlin-3, however, MBNAs also increased the percentage of apoptosis in p53 null cells and exhibited similar potencies for growth inhibition in isogenic cell lines null for p53 or p21. Neither the MBNAs nor Nutin-3 caused cell cycle arrest in p53 null HCT116 cells. Despite the relatively modest size of the screening library, the combination of a novel p53-hDM2 PPIB assay together with an automated imaging HCS platform and image analysis methods enabled the discovery of a novel chemotype series that disrupts p53-hDM2 interactions in cells.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Técnicas Biosensibles , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Daño del ADN , Humanos , Naftiridinas/farmacología , Unión Proteica/efectos de los fármacos , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas/química
12.
Assay Drug Dev Technol ; 8(4): 437-58, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20662736

RESUMEN

We present here the characterization and optimization of a novel imaging-based positional biosensor high-content screening (HCS) assay to identify disruptors of p53-hDM2 protein-protein interactions (PPIs). The chimeric proteins of the biosensor incorporated the N-terminal PPI domains of p53 and hDM2, protein targeting sequences (nuclear localization and nuclear export sequence), and fluorescent reporters, which when expressed in cells could be used to monitor p53-hDM2 PPIs through changes in the subcellular localization of the hDM2 component of the biosensor. Coinfection with the recombinant adenovirus biosensors was used to express the NH-terminal domains of p53 and hDM2, fused to green fluorescent protein and red fluorescent protein, respectively, in U-2 OS cells. We validated the p53-hDM2 PPI biosensor (PPIB) HCS assay with Nutlin-3, a compound that occupies the hydrophobic pocket on the surface of the N-terminus of hDM2 and blocks the binding interactions with the N-terminus of p53. Nutlin-3 disrupted the p53-hDM2 PPIB in a concentration-dependent manner and provided a robust, reproducible, and stable assay signal window that was compatible with HCS. The p53-hDM2 PPIB assay was readily implemented in HCS and we identified four (4) compounds in the 1,280-compound Library of Pharmacologically Active Compounds that activated the p53 signaling pathway and elicited biosensor signals that were clearly distinct from the responses of inactive compounds. Anthracycline (topoisomerase II inhibitors such as mitoxantrone and ellipticine) and camptothecin (topoisomerase I inhibitor) derivatives including topotecan induce DNA double strand breaks, which activate the p53 pathway through the ataxia telangiectasia mutated-checkpoint kinase 2 (ATM-CHK2) DNA damage response pathway. Although mitoxantrone, ellipticine, camptothecin, and topotecan all exhibited concentration-dependent disruption of the p53-hDM2 PPIB, they were much less potent than Nutlin-3. Further, their corresponding cellular images and quantitative HCS data did not completely match the Nutlin-3 phenotypic profile.


Asunto(s)
Antineoplásicos/farmacología , Técnicas Biosensibles , Ensayos Analíticos de Alto Rendimiento , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Camptotecina/farmacología , Línea Celular Tumoral , Quinasa de Punto de Control 2 , Elipticinas/farmacología , Genes p53 , Humanos , Imidazoles/farmacología , Mitoxantrona/farmacología , Piperazinas/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Bibliotecas de Moléculas Pequeñas , Espectrometría de Fluorescencia , Topotecan/farmacología
13.
Biotechnol Bioeng ; 107(5): 854-64, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20665479

RESUMEN

Diagnosis of cardiovascular disease is currently limited by the testing modality. Serum tests for biomarkers can provide quantification of severity but lack the ability to localize the source of the cardiovascular disease, while imaging technology such as angiography and ultrasound can only determine areas of reduced flow but not the severity of tissue ischemia. Targeted imaging with ultrasound contrast agents offers the ability to locally image as well as determine the degree of ischemia by utilizing agents that will cause the contrast agent to home to the affected tissue. Ultrasound molecular imaging via targeted microbubbles (MB) is currently limited by its sensitivity to molecular markers of disease relative to other techniques (e.g., radiolabeling). We hypothesize that computational modeling may provide a useful first approach to maximize microbubble binding by defining key parameters governing adhesion. Adhesive dynamics (AD) was used to simulate the fluid dynamic and stochastic molecular binding of microbubbles to inflamed endothelial cells. Sialyl Lewis(X) (sLe(x)), P-selectin aptamer (PSA), and ICAM-1 antibody (abICAM) were modeled as the targeting receptors on the microbubble surface in both single- and dual-targeted arrangements. Microbubble properties (radius [R(c)], kinetics [k(f), k(r)], and densities of targeting receptors) and the physical environment (shear rate and target ligand densities) were modeled. The kinetics for sLe(x) and PSA were measured with surface plasmon resonance. R(c), shear rate, and densities of sLe(x), PSA, or abICAM were varied independently to assess model sensitivity. Firm adhesion was defined as MB velocity <2% of the free stream velocity. AD simulations revealed an optimal microbubble radius of 1-2 µm and thresholds for kf(in) ( >10(2) s(-1)) and kr(o) (<10(-3) s(-1)) for firm adhesion in a multi-targeted system. State diagrams for multi-targeted microbubbles suggest sLe(x) and abICAM microbubbles may require 10-fold more ligand to achieve firm adhesion at higher shear rates than sLe(x) and PSA microbubbles. The AD model gives useful insight into the key parameters for stable microbubble binding, and may allow flexible, prospective design, and optimization of microbubbles to enhance clinical translation of ultrasound molecular imaging.


Asunto(s)
Medios de Contraste/metabolismo , Medios de Contraste/farmacocinética , Microburbujas , Ultrasonografía/métodos , Simulación por Computador , Células Endoteliales/metabolismo , Ligandos , Resonancia por Plasmón de Superficie
14.
J Biol Chem ; 284(3): 1884-95, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19008229

RESUMEN

The N-end rule pathway is a ubiquitin-dependent system where E3 ligases called N-recognins, including UBR1 and UBR2, recognize type-1 (basic) and type-2 (bulky hydrophobic) N-terminal residues as part of N-degrons. We have recently reported an E3 family (termed UBR1 through UBR7) characterized by the 70-residue UBR box, among which UBR1, UBR2, UBR4, and UBR5 were captured during affinity-based proteomics with synthetic degrons. Here we characterized substrate binding specificity and recognition domains of UBR proteins. Pull-down assays with recombinant UBR proteins suggest that 570-kDa UBR4 and 300-kDa UBR5 bind N-degron, whereas UBR3, UBR6, and UBR7 do not. Binding assays with 24 UBR1 deletion mutants and 31 site-directed UBR1 mutations narrow down the degron-binding activity to a 72-residue UBR box-only fragment that recognizes type-1 but not type-2 residues. A surface plasmon resonance assay shows that the UBR box binds to the type-1 substrate Arg-peptide with Kd of approximately 3.4 microm. Downstream from the UBR box, we identify a second substrate recognition domain, termed the N-domain, required for type-2 substrate recognition. The approximately 80-residue N-domain shows structural and functional similarity to 106-residue Escherichia coli ClpS, a bacterial N-recognin. We propose a model where the 70-residue UBR box functions as a common structural element essential for binding to all known destabilizing N-terminal residues, whereas specific residues localized in the UBR box (for type 1) or the N-domain (for type 2) provide substrate selectivity through interaction with the side group of an N-terminal amino acid. Our work provides new insights into substrate recognition in the N-end rule pathway.


Asunto(s)
Péptidos/química , Ubiquitina-Proteína Ligasas/química , Ubiquitinación/fisiología , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Humanos , Ratones , Péptidos/genética , Péptidos/metabolismo , Estructura Terciaria de Proteína/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Eukaryot Cell ; 7(12): 2037-51, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18806210

RESUMEN

Endoplasmic reticulum (ER) stress can trigger apoptosis and necrosis in many types of mammalian cells. Previous studies in yeast found little or no cell death in response to the ER stressor tunicamycin, but a recent study suggested widespread apoptosis-like death. Here we show that wild-type laboratory Saccharomyces cerevisiae cells responding to tunicamycin die by nonapoptotic mechanisms in low-osmolyte culture media and survive for long periods of time in standard synthetic media. Survival requires calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase, but none of its known targets. The Ca(2+)/calmodulin-dependent protein kinase Cmk2 was identified as an indirect target of calcineurin that suppresses death of calcineurin-deficient cells. Death of Cmk2- and/or calcineurin-deficient S. cerevisiae cells was preceded by accumulation of reactive oxygen species but was not associated with hallmarks of apoptosis and was not dependent on Mca1, Aif1, Nuc1, or other factors implicated in apoptosis-like death. Cmk2 and calcineurin also independently suppressed the death of S. cerevisiae cells responding to dithiothreitol or miconazole, a common azole-class antifungal drug. Though inhibitors of Hsp90 have been shown to diminish calcineurin signaling in S. cerevisiae and to synergistically inhibit growth in combination with azoles, they did not stimulate death of S. cerevisiae cells in combination with miconazole or tunicamycin, and instead they prevented the death of calcineurin- and Cmk2-deficient cells. These findings reveal a novel prodeath role for Hsp90 and antideath roles for calcineurin and Cmk2 that extend the life span of S. cerevisiae cells responding to both natural and clinical antifungal compounds.


Asunto(s)
Calcineurina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Antifúngicos/farmacología , Calcineurina/genética , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tunicamicina/farmacología
16.
Mol Biol Cell ; 17(8): 3409-22, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16738305

RESUMEN

Mating pheromones promote cellular differentiation and fusion of yeast cells with those of the opposite mating type. In the absence of a suitable partner, high concentrations of mating pheromones induced rapid cell death in approximately 25% of the population of clonal cultures independent of cell age. Rapid cell death required Fig1, a transmembrane protein homologous to PMP-22/EMP/MP20/Claudin proteins, but did not require its Ca2+ influx activity. Rapid cell death also required cell wall degradation, which was inhibited in some surviving cells by the activation of a negative feedback loop involving the MAP kinase Slt2/Mpk1. Mutants lacking Slt2/Mpk1 or its upstream regulators also underwent a second slower wave of cell death that was independent of Fig1 and dependent on much lower concentrations of pheromones. A third wave of cell death that was independent of Fig1 and Slt2/Mpk1 was observed in mutants and conditions that eliminate calcineurin signaling. All three waves of cell death appeared independent of the caspase-like protein Mca1 and lacked certain "hallmarks" of apoptosis. Though all three waves of cell death were preceded by accumulation of reactive oxygen species, mitochondrial respiration was only required for the slowest wave in calcineurin-deficient cells. These findings suggest that yeast cells can die by necrosis-like mechanisms during the response to mating pheromones if essential response pathways are lacking or if mating is attempted in the absence of a partner.


Asunto(s)
Péptidos/farmacología , Feromonas/farmacología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Biopolímeros/metabolismo , Calcineurina/metabolismo , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Pared Celular/metabolismo , Cromatina/metabolismo , Factor de Apareamiento , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...