Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(50): 6383-6386, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38814048

RESUMEN

One-dimensional dissolution of a layered compound in a nonpolar organic solvent is reported for the first time. A high-aspect ratio fluorohectorite modified with a cationic surfactant (dioctadecyldimethylammonium) showed spontaneous delamination into monolayer nanosheets in chloroform.

2.
Adv Sci (Weinh) ; 11(5): e2305099, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044310

RESUMEN

2D transition metal carbides and nitrides (MXenes) suggest an uncommonly broad combination of important functionalities amongst 2D materials. Nevertheless, MXene suffers from facile oxidation and colloidal instability upon conventional water-based processing, thus limiting applicability. By experiments and theory, It is suggested that for stability and dispersibility, it is critical to select uncommonly high permittivity solvents such as N-methylformamide (NMF) and formamide (FA) (εr  = 171, 109), unlike the classical solvents characterized by high dipole moment and polarity index. They also allow high MXene stacking order within thin films on carbon nanotube (CNT) substrates, showing very high Terahertz (THz) shielding effectiveness (SE) of 40-60 dB at 0.3-1.6 THz in spite of the film thinness < 2 µm. The stacking order and mesoscopic porosity turn relevant for THz-shielding as characterized by small-angle X-ray scattering (SAXS). The mechanistic understanding of stability and structural order allows guidance for generic MXene applications, in particular in telecommunication, and more generally processing of 2D materials.

3.
Mater Horiz ; 10(9): 3749-3760, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37404036

RESUMEN

Metamaterials possess exotic properties that do not occur in nature and have attracted significant attention in research and engineering. Two decades ago, the field of metamaterials emerged from linear electromagnetism, and today it encompasses a wide range of aspects related to solid matter, including electromagnetic and optical, mechanical and acoustic, as well as unusual thermal or mass transport phenomena. Combining different material properties can lead to emergent synergistic functions applicable in everyday life. Nevertheless, making such metamaterials in a robust, facile, and scalable manner is still challenging. This paper presents an effective protocol allowing for metasurfaces offering a synergy between optical and thermal properties. It utilizes liquid crystalline suspensions of nanosheets comprising two transparent silicate monolayers in a double stack, where gold nanoparticles are sandwiched between the two silicate monolayers. The colloidally stable suspension of nanosheets was applied in nanometre-thick coatings onto various substrates. The transparent coatings serve as absorbers in the infrared spectrum allowing for the efficient conversion of sunlight into heat. The peculiar metasurface couples plasmon-enhanced adsorption with anisotropic heat conduction in the plane of the coating, both at the nanoscale. Processing of the coating is based on scalable and affordable wet colloidal processing instead of having to apply physical deposition in high vacuum or lithographic techniques. Upon solar irradiation, the colloidal metasurface is quickly (60% of the time taken for the non-coated glass) heated to the level where complete defogging is assured without sacrificing transparency in the visible range. The protocol is generally applicable allowing for intercalation of any nanoparticles covering a range of physical properties that are then inherited to colloidal nanosheets. Because of their large aspect ratio, the nanosheets will inevitably orient parallel to any surface. This will allow for a toolbox capable of mimicking metamaterial properties while assuring facile processing via dip coating or spray coating.

4.
Nano Lett ; 22(18): 7499-7505, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36094390

RESUMEN

The transition dipole orientations of dye assemblies in heterostructures have a crucial impact on the efficiency of novel optoelectronic devices such as organic thin-film transistors and light-emitting diodes. These devices are frequently based on heterojunctions and tandem structures featuring multiple optical transitions. Precise knowledge of preferred orientations, spatial order, and spatial variations is highly relevant. We present a fast and universal large-area screening method to determine the transition dipole orientations in dye assemblies with diffraction-limited spatial resolution. Moreover, our hyperspectral imaging approach disentangles the orientations of different chromophores. As a demonstration, we apply our technique to dye monolayers with two optical transitions sandwiched between two ultrathin silicate nanosheets. A comprehensive model for dipole orientation distributions in monolayers reveals a long-range orientational order and a strong correlation between the two transitions.

5.
Langmuir ; 38(35): 10781-10790, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-35863753

RESUMEN

Swelling of clays is hampered by increasing layer charge. With vermiculite-type layer charge densities, crystalline swelling is limited to the two-layer hydrate, while osmotic swelling requires ion exchange with bulky and hydrophilic organic molecules or with Li+ cations to trigger repulsive osmotic swelling. Here, we report on surprising and counterintuitive osmotic swelling behavior of a vermiculite-type synthetic clay [Na0.7]inter[Mg2.3Li0.7]oct[Si4]tetO10F2 in mixtures of water and dimethyl sulfoxide (DMSO). Although swelling in pure water is restricted to crystalline swelling, with the addition of DMSO, osmotic swelling sets in at some threshold composition. Finally, when the DMSO concentration is increased further to 75 vol %, swelling is restricted again to crystalline swelling as expected. Repulsive osmotic swelling thus is observed in a narrow composition range of the binary water-DMSO mixture, where a freezing point suppression is observed. This suppression is related to DMSO and water molecules exhibiting strong interactions leading to stable molecular clusters. Based on this phenomenological observation, we hypothesize that the unexpected swelling behavior might be related to the formation of different complexes of interlayer cations being formed at different compositions. Powder X-ray diffraction and 23Na magic angle spinning-NMR evidence is presented that supports this hypothesis. We propose that the synergistic solvation of the interlayer sodium at favorable compositions exerts a steric pressure by the complexes formed in the interlayer. Concomitantly, the basal spacing is increased to a level, where entropic contributions of interlayer species lead to a spontaneous thermodynamically allowed one-dimensional dissolution of the clay stack.

6.
Sci Adv ; 8(4): eabl8147, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35080971

RESUMEN

Structural colors originate by constructive interference following reflection and scattering of light from nanostructures with periodicity comparable to visible light wavelengths. Bright and noniridescent structural colorations are highly desirable. Here, we demonstrate that bright noniridescence structural coloration can be easily and rapidly achieved from suspended two-dimensional nanosheets of a clay mineral. We show that brightness is enormously improved by using double clay nanosheets, thus optimizing the clay refractive index that otherwise hampers structural coloration from such systems. Intralayer distances, and thus the structural colors, can be precisely and reproducibly controlled by clay concentration and ionic strength independently, and noniridescence is readily and effortlessly obtained in this system. Embedding such clay-designed nanosheets in recyclable solid matrices could provide tunable vivid coloration and mechanical strength and stability at the same time, thus opening a previously unknown venue for sustainable structural coloration.

7.
Langmuir ; 37(1): 461-468, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356310

RESUMEN

Repulsive osmotic delamination is thermodynamically allowed "dissolution" of two-dimensional (2D) materials and therefore represents an attractive alternative to liquid-phase exfoliation to obtain strictly monolayered nanosheets with an appreciable aspect ratio with quantitative yield. However, osmotic delamination was so far restricted to aqueous media, severely limiting the range of accessible 2D materials. Alkali-metal intercalation compounds of MoS2 or graphite are excluded because they cannot tolerate even traces of water. We now succeeded in extending osmotic delamination to polar and aprotic organic solvents. Upon complexation of interlayer cations of synthetic hectorite clay by crown ethers, either 15-crown-5 or 18-crown-6, steric pressure is exerted, which helps in reaching the threshold separation required to trigger osmotic delamination based on translational entropy. This way, complete delamination in water-free solvents like aprotic ethylene and propylene carbonate, N-methylformamide, N-methylacetamide, and glycerol carbonate was achieved.

8.
Langmuir ; 36(14): 3814-3820, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32196347

RESUMEN

The swelling of clay minerals in organic solvents or solvent mixtures is key for the fabrication of polymer nanocomposites with perfectly dispersed filler that contain only individual clay layers. Here, we investigated the swelling behavior of sodium hectorite in different ternary solvent mixtures containing methanol, acetonitrile, ethylene glycol, or glycerol carbonate with minimal amounts of water. We found that in these mixtures, less water is required than in the corresponding binary mixtures to allow for complete delamination by repulsive osmotic swelling. A quantitative study of osmotic swelling in a particular ternary mixture shows that organic solvents resemble swelling behavior in pure water. At hectorite contents larger than 5 vol %, the separation of individual layers scales with ϕ-1. At this concentration, a crossover is observed and swelling continues at a slower pace (ϕ-0.5) below this value.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...