Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Intervalo de año de publicación
1.
Zookeys ; 1143: 165-187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234279

RESUMEN

We studied Liodessus diving beetles from six eastern Colombian Páramo areas, as well as from the Altiplano. We discovered a highly characteristic new species, based on male genital morphology, Liodessussantarositasp. nov., in the Páramo de Guantiva-Rusia. Specimens from the Altiplano around Bogotá, and the Páramos of Almorzadero, Chingaza, Matarredonda, Rabanal y Rio Bogotá and Sumapaz form one clade of genetically similar populations based on mitochondrial Cox1 sequence data. The individuals of this clade are sub-structured according to their geographic distribution. The populations differ from each other mainly in terms of body size and coloration and, at most, subtly in their genital morphology. In two cases, we find putative hybrid populations between Altiplano and Páramo areas. We suggest that the different Páramo populations are in an early phase of speciation, and perhaps already genetically isolated in some cases. They are here assigned subspecies status to highlight these ongoing processes pending more comprehensive geographic sampling and use of genomic data. We refer to this clade as the Liodessusbogotensis complex, containing Liodessusb.bogotensis Guignot, 1953; Liodessusb.almorzaderossp. nov.; Liodessusb.chingazassp. nov.; Liodessusb.lacunaviridis Balke et al., 2021, stat. nov.; Liodessusb.matarredondassp. nov., and Liodessusb.sumapazssp. nov.

2.
Syst Biol ; 70(4): 635-647, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33507310

RESUMEN

Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].


Asunto(s)
Antozoos , Anémonas de Mar , Animales , Antozoos/genética , Ecosistema , Genes Mitocondriales , Filogenia , Anémonas de Mar/genética
3.
Mar Pollut Bull ; 157: 111327, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32658692

RESUMEN

Marine litter is a world-wide problem, but the knowledge on this topic in remote areas such as the poles and the deep-sea is still limited. This paper seeks to provide the first accounts of deep-sea litter in the South-Western Caribbean Sea. The survey used 5066 still images from ROV video surveys around four hydrocarbon exploratory drilling zones. Forty-eight deep-sea litter items were found at depths between 427 and 2561 m, and analyzed by three different marine litter classifications. Plastic was the most frequent material (65%) and general litter the main category (69%). Almost half of the deep-sea litter items were found close to marine organism. This baseline is a first step to further research of human impact on the marine bottoms of the Caribbean. The paper highlights the importance of deep-sea litter as a descriptor of marine pollution, and the role of scientific cooperation between off-shore industry and the academy.


Asunto(s)
Monitoreo del Ambiente , Residuos/análisis , Región del Caribe , Mar Mediterráneo , Plásticos , Contaminación del Agua/análisis
4.
Biodivers Data J ; 7: e33091, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31130812

RESUMEN

BACKGROUND: Attention to the deep-sea environment has increased dramatically in the last decade due to the rising interest in natural resource exploitation. Although Colombia holds a large submerged territory, knowledge of the seabed and its biodiversity beyond 1,000 m depth is very limited. During 2015-2017, Anadarko Colombia Company (ACC) carried out hydrocarbon exploratory activities in the South-western Colombian Caribbean, at depths between 375 m and 2,565 m. NEW INFORMATION: Capitalising on available data resources from these activities, several cnidarian species were observed in ROV and towed camera surveys. We analysed over nine hours of video and 5,066 still images from these surveys, identifying organisms to the lowest possible taxonomic level. The images and associated data presented here correspond to 108 observations of deep-sea cnidarians, including seven new records for the Colombian Caribbean. Given the paucity of research and funding to explore the deep-sea in Colombia, the present dataset comprises the largest deep-sea Cnidaria imagery inventory to date for the Colombian Caribbean.

5.
Mol Ecol Resour ; 18(2): 281-295, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29131534

RESUMEN

Anthozoans (e.g., corals, anemones) are an ecologically important and diverse group of marine metazoans that occur from shallow to deep waters worldwide. However, our understanding of the evolutionary relationships among the ~7,500 species within this class is hindered by the lack of phylogenetically informative markers that can be reliably sequenced across a diversity of taxa. We designed and tested 16,306 RNA baits to capture 720 ultraconserved element loci and 1,071 exon loci. Library preparation and target enrichment were performed on 33 taxa from all orders within the class Anthozoa. Following Illumina sequencing and Trinity assembly, we recovered 1,774 of 1,791 targeted loci. The mean number of loci recovered from each species was 638 ± 222, with more loci recovered from octocorals (783 ± 138 loci) than hexacorals (475 ± 187 loci). Parsimony informative sites ranged from 26 to 49% for alignments at differing hierarchical taxonomic levels (e.g., Anthozoa, Octocorallia, Hexacorallia). The per cent of variable sites within each of three genera (Acropora, Alcyonium, and Sinularia) for which multiple species were sequenced ranged from 4.7% to 30%. Maximum-likelihood analyses recovered highly resolved trees with topologies matching those supported by other studies, including the monophyly of the order Scleractinia. Our results demonstrate the utility of this target-enrichment approach to resolve phylogenetic relationships from relatively old to recent divergences. Redesigning the baits with improved affinities to capture loci within each subclass will provide a valuable toolset to address systematic questions, further our understanding of the timing of diversifications and help resolve long-standing controversial relationships in the class Anthozoa.


Asunto(s)
Antozoos/clasificación , Antozoos/genética , Genética de Población/métodos , Técnicas de Genotipaje/métodos , Animales
6.
BMC Evol Biol ; 16: 2, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26727928

RESUMEN

BACKGROUND: Antarctica is surrounded by the Antarctic Circumpolar Current (ACC), the largest and strongest current in the world. Despite its potential importance for shaping biogeographical patterns, the distribution and connectivity of deep-sea populations across the ACC remain poorly understood. In this study we conducted the first assessment of phylogeographical patterns in deep-sea octocorals in the South Pacific and Southern Ocean, specifically a group of closely related bottlebrush octocorals (Primnoidae: Tokoprymno and Thourella), as a test case to study the effect of the ACC on the population structure of brooding species. We assessed the degree to which the ACC constitutes a barrier to gene flow between northern and southern populations and whether the onset of diversification of these corals coincides with the origin of the ACC (Oligocene-Miocene boundary). RESULTS: Based on DNA sequences of two nuclear genes from 80 individuals and a combination of phylogeographic model-testing approaches we found a phylogenetic break corresponding to the spatial occurrence of the ACC. We also found significant genetic structure among our four regional populations. However, we uncovered shared haplotypes among certain population pairs, suggesting long-distance, asymmetrical migration. Our divergence time analyses indicated that the separation of amphi-ACC populations took place during the Middle Miocene around 12.6 million years ago, i.e., after the formation of the ACC. CONCLUSION: We suggest that the ACC constitutes a semi-permeable barrier to these deep-sea octocorals capable of separating and structuring populations, while allowing short periods of gene flow. The fluctuations in latitudinal positioning of the ACC during the Miocene likely contributed to the diversification of these octocorals. Additionally, we provide evidence that the populations from each of our four sampling regions could actually constitute different species.


Asunto(s)
Antozoos/genética , Biodiversidad , Animales , Regiones Antárticas , Flujo Génico , Haplotipos , Océanos y Mares , Filogenia , Filogeografía
7.
Mol Phylogenet Evol ; 74: 15-28, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24530869

RESUMEN

Bamboo corals belong to a species rich and abundant group of octocorals that occur throughout the world's oceans, primarily in the deep-sea. Their study through morphological, ecological and evolutionary approaches has been problematic because of the extreme environments many of them inhabit and therefore the difficulty of obtaining good quality samples. However, new undescribed species have been commonly collected as part of invertebrate by-catch studies from commercial fisheries. In this study we describe two new species of deep-sea bamboo corals from New Zealand waters, including the Ross Sea (Antarctica) using morphological and molecular approaches. For the morphological description we used macro-structural characters such as branching pattern, color and polyp arrangement, along with axis architecture and sclerite shape and arrangement. The new species fit in the subfamily Keratoisidinae and the genus Keratoisis. Keratoisis magnifica n.sp. is characterized by having big, highly armed conical polyps and K. peara n.sp. has long, smooth internodes with an unusual nacreous lustre. Additionally, we amplified three mitochondrial genes (16S, igr4 and mtMutS), and obtained optimal topologies through maximum likelihood and Bayesian approaches. The resulting molecular phylogenies corroborated the status of the new taxa and elucidated their relationships to closely related species. Additionally, we show further genetic evidence that branching pattern, as previously thought, could be an unreliable character not only for Lepidisis/Keratoisis, but also for other genera within the Keratoisidinae.


Asunto(s)
Antozoos/genética , Filogenia , Animales , Antozoos/anatomía & histología , Teorema de Bayes , Funciones de Verosimilitud , Microscopía Electrónica de Rastreo , Nueva Zelanda , Análisis de Secuencia de ADN
8.
Rev. biol. trop ; 62(supl.1): 209-219, feb. 2014. ilus, graf, mapas, tab
Artículo en Inglés | LILACS, SaludCR | ID: lil-753734

RESUMEN

Owing to the decrease of reef organisms in general, it has become essential to study populations that are prone to marine diseases, with the purpose of developing accurate survivorship predictions and in turn alarm on triggers and drivers of disease outbreaks. In this study, we quantified the octocorals of Gorgona island, Tropical Eastern Pacific (Colombia), during 2007 and 2009 documenting a mass mortality occurred during 2008. We recorded 16 octocoral species with densities that ranged between 2 and 30 colonies m-2. Most abundant octocorals were Leptogorgia alba and Pacifigorgia spp. (Gorgoniidae: Octocorallia). During 2009 we noticed a mass mortality involving Pacifigorgia irene, P. adamsi, P. rubicunda and P. eximia, with a reduction of 70% of the colonies between 12 and 20 m in water depth. Around 5% of seafans during 2007 had an epizootic disease similar to aspergillosis, which seems the cause of the mass octocoral mortality. This disease outbreak observed in Gorgona island, and other nearby areas of the Colombian Pacific during 2007-2010, corresponded to extended periods of anomalous elevated seawater surface temperatures and thermal anomalies during the upwelling season of 2008. Constant monitoring of seawater temperatures and octocoral populations are urgently needed in this area to understand the nature of this new disease outbreak. Rev. Biol. Trop. 62 (Suppl. 1): 209-219. Epub 2014 February 01.


Debido a la disminución de los organismos de los arrecifes en general, es fundamental conocer las poblaciones de organismos propensos a enfermedades marinas, con el propósito de desarrollar predicciones precisas de supervivencia y a su vez dar la alarma sobre los motivos y las causas de los brotes de las enfermedades. En este estudio, hemos cuantificado los octocorales de la Isla Gorgona, Pacífico Oriental Tropical (Colombia), durante 2007 y 2009, y documentamos una mortalidad masiva que se produjo durante el año 2008. Se registraron 16 especies de octocorales con densidades que oscilan entre 2 y 30 colonias m-2. Los octocorales más abundantes fueron Leptogorgia alba y Pacifigorgia spp. (Gorgoniidae: Octocorallia). Durante el año 2009 nos dimos cuenta de una mortalidad masiva que afectaba a Pacifigorgia irene, P. adamsi, P. rubicunda y P. eximia, con una reducción del 70% de las colonias entre 12 y 20 m de profundidad. Alrededor del 5% de los abanicos de mar durante el año 2007 tenían una epizootia similar a la aspergilosis, que parece ser la causa de la mortalidad masiva de octocorales. Este brote de la enfermedad observada en la Isla Gorgona, y otras zonas cercanas del Pacífico colombiano durante el período 2007-2010, corresponden a períodos prolongados de altas temperaturas superficiales del mar y de anomalías térmicas durante la temporada de surgencia durante 2008. Se necesita con urgencia un monitoreo constante de las temperaturas marinas y de las poblaciones de octocorales en esta área para comprender la naturaleza de este nuevo brote de enfermedad marina.


Asunto(s)
Antozoos , Arrecifes de Coral , Calor/efectos adversos , Flora Marina , Enfermedad , Colombia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...