Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 326(3): H655-H669, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241009

RESUMEN

Myocardial fibrosis is a feature found in most cardiac diseases and a key element contributing to heart failure and its progression. It has therefore become a subject of particular interest in cardiac research. Mechanisms leading to pathological cardiac remodeling and heart failure are diverse, including effects on cardiac fibroblasts, the main players in cardiac extracellular matrix synthesis, but also on cardiomyocytes, immune cells, endothelial cells, and more recently, platelets. Although transforming growth factor-ß (TGF-ß) is a primary regulator of fibrosis development, the cellular and molecular mechanisms that trigger its activation after cardiac injury remain poorly understood. Different types of anti-TGF-ß drugs have been tested for the treatment of cardiac fibrosis and have been associated with side effects. Therefore, a better understanding of these mechanisms is of great clinical relevance and could allow us to identify new therapeutic targets. Interestingly, it has been shown that platelets infiltrate the myocardium at an early stage after cardiac injury, producing large amounts of cytokines and growth factors. These molecules can directly or indirectly regulate cells involved in the fibrotic response, including cardiac fibroblasts and immune cells. In particular, platelets are known to be a major source of TGF-ß1. In this review, we have provided an overview of the classical cellular effectors involved in the pathogenesis of cardiac fibrosis, focusing on the emergent role of platelets, while discussing opportunities for novel therapeutic interventions.


Asunto(s)
Células Endoteliales , Insuficiencia Cardíaca , Humanos , Células Endoteliales/metabolismo , Miocardio/metabolismo , Fibroblastos/metabolismo , Fibrosis , Insuficiencia Cardíaca/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Basic Res Cardiol ; 116(1): 10, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564961

RESUMEN

We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.


Asunto(s)
Proteínas Quinasas Activadas por AMP/deficiencia , Conexina 43/metabolismo , Infarto del Miocardio/enzimología , Miocardio/enzimología , Miofibroblastos/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proliferación Celular , Conexina 43/genética , Modelos Animales de Enfermedad , Femenino , Fibrosis , Eliminación de Gen , Células HEK293 , Humanos , Masculino , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Miofibroblastos/patología , Transducción de Señal
3.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32759774

RESUMEN

Vascular hyperpermeability is a determinant factor in the pathophysiology of sepsis. While, AMP-activated protein kinase (AMPK) is known to play a role in maintaining endothelial barrier function in this condition. Therefore, we investigated the underlying molecular mechanisms of this protective effect. α1AMPK expression and/or activity was modulated in human dermal microvascular endothelial cells using either α1AMPK-targeting small interfering RNA or the direct pharmacological AMPK activator 991, prior to lipopolysaccharide (LPS) treatment. Western blotting was used to analyze the expression and/or phosphorylation of proteins that compose cellular junctions (zonula occludens-1 (ZO-1), vascular endothelial cadherin (VE-Cad), connexin 43 (Cx43)) or that regulate actin cytoskeleton (p38 MAPK; heat shock protein 27 (HSP27)). Functional endothelial permeability was assessed by in vitro Transwell assays, and quantification of cellular junctions in the plasma membrane was assessed by immunofluorescence. Actin cytoskeleton remodeling was evaluated through actin fluorescent staining. We consequently demonstrate that α1AMPK deficiency is associated with reduced expression of CX43, ZO-1, and VE-Cad, and that the drastic loss of CX43 is likely responsible for the subsequent decreased expression and localization of ZO-1 and VE-Cad in the plasma membrane. Moreover, α1AMPK activation by 991 protects against LPS-induced endothelial barrier disruption by reinforcing cortical actin cytoskeleton. This is due to a mechanism that involves the phosphorylation of p38 MAPK and HSP27, which is nonetheless independent of the small GTPase Rac1. This results in a drastic decrease of LPS-induced hyperpermeability. We conclude that α1AMPK activators that are suitable for clinical use may provide a specific therapeutic intervention that limits sepsis-induced vascular leakage.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Permeabilidad Capilar/genética , Sepsis/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Antígenos CD/genética , Cadherinas/genética , Conexina 43/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Proteínas de Choque Térmico HSP27/genética , Humanos , Lipopolisacáridos/toxicidad , ARN Interferente Pequeño/farmacología , Sepsis/patología , Transducción de Señal , Proteína de la Zonula Occludens-1/genética
4.
PLoS One ; 11(12): e0168058, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992567

RESUMEN

AIM: Adipose-derived stem cells (ASC) are currently proposed for wound healing in those with type 2 diabetes mellitus (T2DM). Therefore, this study investigated the impact of diabetes on adipose tissue in relation to ASC isolation, proliferation, and growth factor release and the impact of hyperglycemia and low oxygen tension (found in diabetic wounds) on dermal fibroblasts, keratinocytes, and ASC in vitro. METHODS: Different sequences of hypoxia and hyperglycemia were applied in vitro to ASC from nondiabetic (n = 8) or T2DM patients (n = 4) to study cell survival, proliferation, and growth factor release. Comparisons of dermal fibroblasts (n = 8) and keratinocytes (primary lineage) were made. RESULTS: No significant difference of isolation and proliferation capacities was found in ASC from nondiabetic and diabetic humans. Hypoxia and hyperglycemia did not impact cell viability and proliferation. Keratinocyte Growth Factor release was significantly lower in diabetic ASC than in nondiabetic ASC group in each condition, while Vascular Endothelial Growth Factor release was not affected by the diabetic origin. Nondiabetic ASC exposition to hypoxia (0.1% oxygen) combined with hyperglycemia (25mM glucose), resulted in a significant increase in VEGF secretion (+64%, p<0.05) with no deleterious impact on KGF release in comparison to physiological conditions (5% oxygen and 5 mM glucose). Stromal cell-Derived Factor-1α (-93%, p<0.001) and KGF (-20%, p<0.05) secretion by DF decreased in these conditions. CONCLUSIONS: A better profile of growth factor secretion (regarding wound healing) was found in vitro for ASC in hyperglycemia coupled with hypoxia in comparison to dermal fibroblasts and keratinocytes. Interestingly, ASC from T2DM donors demonstrated cellular growth rates and survival (in hypoxia and hyperglycemic conditions) similar to those of healthy ASC (from normoglycemic donors); however, KGF secretion was significantly depleted in ASC obtained from T2DM patients. This study demonstrated the impact of diabetes on ASC for regenerative medicine and wound healing.


Asunto(s)
Tejido Adiposo/citología , Diabetes Mellitus Tipo 2/patología , Fibroblastos/citología , Glucosa/farmacología , Queratinocitos/citología , Células Madre/citología , Tejido Adiposo/metabolismo , Adulto , Anciano , Hipoxia de la Célula , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Queratinocitos/metabolismo , Masculino , Persona de Mediana Edad , Células Madre/metabolismo , Cicatrización de Heridas , Adulto Joven
5.
Exp Suppl ; 107: 179-201, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27812981

RESUMEN

This chapter summarizes the implication of AMP-activated protein kinase (AMPK) in the regulation of various physiological and pathological cellular events of great importance for the maintenance of cardiac function. These include the control of both metabolic and non-metabolic elements targeting the different cellular components of the cardiac tissue, i.e., cardiomyocytes, fibroblasts, and vascular cells. The description of the multifaceted action of the two AMPK catalytic isoforms, α1 and α2, emphasizes the general protective action of this protein kinase against the development of critical pathologies like myocardial ischemia, cardiac hypertrophy, diabetic cardiomyopathy, and heart failure.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Cardiomegalia/enzimología , Cardiomiopatías Diabéticas/enzimología , Insuficiencia Cardíaca/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Metabolismo Energético/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Humanos , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Biosíntesis de Proteínas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transducción de Señal , Remodelación Ventricular/genética
6.
J Mol Cell Cardiol ; 91: 188-200, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26772531

RESUMEN

Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/metabolismo , Cardiomegalia/genética , Proteínas de la Matriz Extracelular/metabolismo , Infarto del Miocardio/genética , Proteínas Quinasas Activadas por AMP/genética , Envejecimiento/patología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/uso terapéutico , Berberina/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteínas de la Matriz Extracelular/genética , Fibrosis , Regulación de la Expresión Génica , Humanos , Metformina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Resveratrol , Ribonucleótidos/uso terapéutico , Transducción de Señal , Estilbenos/uso terapéutico , Tiazolidinedionas/uso terapéutico , Cicatrización de Heridas
7.
J Mol Cell Cardiol ; 74: 32-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24805196

RESUMEN

Cardiac fibroblasts (CF) are crucial in left ventricular (LV) healing and remodeling after myocardial infarction (MI). They are typically activated into myofibroblasts that express alpha-smooth muscle actin (α-SMA) microfilaments and contribute to the formation of contractile and mature collagen scars that minimize the adverse dilatation of infarcted areas. CF predominantly express the α1 catalytic subunit of AMP-activated protein kinase (AMPKα1), while AMPKα2 is the major catalytic isoform in cardiomyocytes. AMPKα2 is known to protect the heart by preserving the energy charge of cardiac myocytes during injury, but whether AMPKα1 interferes with maladaptative heart responses remains unexplored. In this study, we investigated the role of AMPKα1 in modulating LV dilatation and CF fibrosis during post-MI remodeling. AMPKα1 knockout (KO) and wild type (WT) mice were subjected to permanent ligation of the left anterior descending coronary artery. The absence of AMPKα1 was associated with increased CF proliferation in infarcted areas, while expression of the myodifferentiation marker α-SMA was decreased. Faulty maturation of myofibroblasts might derive from severe down-regulation of the non-canonical transforming growth factor-beta1/p38 mitogen-activated protein kinase (TGF-ß1/p38 MAPK) pathway in KO infarcts. In addition, lysyl oxidase (LOX) protein expression was dramatically reduced in the scar of KO hearts. Although infarct size was similar in AMPK-KO and WT hearts subjected to MI, these changes resulted in compromised scar contractility, defective scar collagen maturation, and exacerbated adverse remodeling, as indicated by increased LV diastolic dimension 30days after MI. Our data genetically demonstrate the centrality of AMPKα1 in post-MI scar formation and highlight the specificity of this catalytic isoform in cardiac fibroblast/myofibroblast biology.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Cicatriz/genética , Contracción Miocárdica , Infarto del Miocardio/genética , Miofibroblastos/enzimología , Remodelación Ventricular , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Proliferación Celular , Cicatriz/enzimología , Cicatriz/patología , Cicatriz/fisiopatología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/enzimología , Miocardio/patología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Miofibroblastos/patología , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...