Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Br J Dermatol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166481

RESUMEN

BACKGROUND: A portion of approximately 2-20% of cutaneous melanoma (CM) are diagnosed as amelanotic/hypopigmented melanoma (AHM) and represent a challenge for early diagnosis. OBJECTIVES: Since the degree to which somatic mutations and copy number aberrations (CNA) in genes associated with skin-lightening or albinism may contribute to the loss of tumour pigmentation in AHM samples has not yet been addressed, we have investigated loss of function mutations of key pigmentation genes in matched germline and AHM as well as pigmented melanoma (PM) tumour DNA samples. METHODS: An analysis of clinical and histopathological characteristics together with whole exome sequencing data of 34 fresh frozen primary CM, graded according to the amount of pigmentation present was performed. Together with germline and somatic variant analysis, 30 samples were previously analysed for CNA changes. This study focussed on germline and somatic variants in the coding region of 16 genes known to be associated with albinism/hypopigmentation or variation in human pigmentation in all samples. Chromosomal regions encompassing these 16 genes were examined for DNA copy loss or gain. RESULTS: The finding that red hair related MC1R and TYR R402Q loss of activity gene variant alleles and genotypes are associated with AHM was validated in this study. Germline AHM-related gene variants were enriched in 70% (n=7 of 10) of AHM patients vs 8.3% (n=2 of 24) of PM patients. This surprisingly high frequency of rare germline variants in AHM patients constitutes the "first hit" and confirms that AHM patients are more likely to be albinism allele carriers than patients with PM. Next, in CNA analysis of each tumour sample, 50% (n=4 of 8) AHM samples with a pigmentation gene variant had LOH in the region containing the corresponding gene, and 25% (=2 of 8) had loss-of-heterozygosity (LOH) in chromosomal regions of two AHM-related genes. CONCLUSIONS: This study proposes that the likely molecular mechanism for development of amelanogenesis in AHM is carriage of an albinism/hypopigmentation allele followed by LOH of the corresponding gene in the tumour.

2.
JAMA Dermatol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141363

RESUMEN

Importance: It is unknown whether germline genetic factors influence in situ melanoma risk differently than invasive melanoma risk. Objective: To determine whether differences in risk of in situ melanoma and invasive melanoma are heritable. Design, Setting, and Participants: Three genome-wide association study meta-analyses were conducted of in situ melanoma vs controls, invasive melanoma vs controls, and in situ vs invasive melanoma (case-case) using 4 population-based genetic cohorts: the UK Biobank, the FinnGen cohort, the QSkin Sun and Health Study, and the Queensland Study of Melanoma: Environmental and Genetic Associations (Q-MEGA). Melanoma status was determined using International Statistical Classification of Diseases and Related Health Problems codes from cancer registry data. Data were collected from 1987 to 2022, and data were analyzed from September 2022 to June 2023. Exposure: In situ and invasive cutaneous melanoma. Main Outcomes and Measures: To test whether in situ and invasive melanoma have independent heritable components, genetic effect estimates were calculated for single-nucleotide variants (SNV; formerly single-nucleotide polymorphisms) throughout the genome for each melanoma. Then, SNV-based heritability was estimated, the genetic correlation between melanoma subtypes was assessed, and polygenic risk scores (PRS) were generated for in situ vs invasive status in Q-MEGA participants. Results: A total of 6 genome-wide significant loci associated with in situ melanoma and 18 loci with invasive melanoma were identified. A strong genetic correlation (genetic r = 0.96; 95% CI, 0.76-1.15) was observed between the 2 classifications. Notably, loci near IRF4, KLF4, and HULC had significantly larger effects for in situ melanoma compared with invasive melanoma, while MC1R had a significantly larger effect on invasive melanoma compared with in situ melanoma. Heritability estimates were consistent for both, with in situ melanoma heritability of 6.7% (95% CI, 4.1-9.3) and invasive melanoma heritability of 4.9% (95% CI, 2.8-7.2). Finally, a PRS, derived from comparing invasive melanoma with in situ melanoma genetic risk, was on average significantly higher in participants with invasive melanoma (odds ratio per 1-SD increase in PRS, 1.43; 95% CI, 1.16-1.77). Conclusions and Relevance: There is much shared genetic architecture between in situ melanoma and invasive melanoma. Despite indistinguishable heritability estimates between the melanoma classifications, PRS suggest germline genetics may influence whether a person gets in situ melanoma or invasive melanoma. PRS could potentially help stratify populations based on invasive melanoma risk, informing future screening programs without exacerbating the current burden of melanoma overdiagnosis.

3.
Br J Dermatol ; 190(2): 199-206, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37766469

RESUMEN

BACKGROUND: Nodular melanoma (NM) is a challenge to diagnose early due to its rapid growth and more atypical clinical presentation, making it the largest contributor to melanoma mortality. OBJECTIVES: Our study aim was to perform a rare-variant allele (RVA) analysis of whole-exome sequencing of patients with NM and non-NM (minor allele frequency ≤ 1% non-Finnish European) for a set of 500 candidate genes potentially implicated in melanoma. METHODS: This study recruited 131 participants with NM and 194 with non-NM from South-east Queensland and patients with NM from Victoria to perform a comparative analysis of possible genetic differences or similarities between the two melanoma cohorts. RESULTS: Phenotypic analysis revealed that a majority of patients diagnosed with NM were older males with a higher frequency of fair skin and red hair than is seen in the general population. The distribution of common melanoma polygenic risk scores was similar in patients with NM and non-NM, with over 28% in the highest quantile of scores. There was also a similar frequency of carriage of familial/high-penetrant melanoma gene and loss-of-function variants. We identified 39 genes by filtering 500 candidate genes based on the greatest frequency in NM compared with non-NM cases. The genes with RVAs of greatest frequency in NM included PTCH1, ARID2 and GHR. Rare variants in the SMO gene, which interacts with PTCH1 as ligand and receptor, were also identified, providing evidence that the Hedgehog pathway may contribute to NM risk. There was a cumulative effect in carrying multiple rare variants in the NM-associated genes. A 14.8-fold increased ratio for NM compared with non-NM was seen when two RVAs of the 39 genes were carried by a patient. CONCLUSIONS: This study highlights the importance of considering frequency of RVA to identify those at risk of NM in addition to known high penetrance genes.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Masculino , Humanos , Melanoma/genética , Proteínas Hedgehog , Neoplasias Cutáneas/genética , Factores de Riesgo , Frecuencia de los Genes , Predisposición Genética a la Enfermedad
4.
Hum Reprod ; 39(1): 240-257, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052102

RESUMEN

STUDY QUESTION: Which genetic factors regulate female propensity for giving birth to spontaneous dizygotic (DZ) twins? SUMMARY ANSWER: We identified four new loci, GNRH1, FSHR, ZFPM1, and IPO8, in addition to previously identified loci, FSHB and SMAD3. WHAT IS KNOWN ALREADY: The propensity to give birth to DZ twins runs in families. Earlier, we reported that FSHB and SMAD3 as associated with DZ twinning and female fertility measures. STUDY DESIGN, SIZE, DURATION: We conducted a genome-wide association meta-analysis (GWAMA) of mothers of spontaneous dizygotic (DZ) twins (8265 cases, 264 567 controls) and of independent DZ twin offspring (26 252 cases, 417 433 controls). PARTICIPANTS/MATERIALS, SETTING, METHODS: Over 700 000 mothers of DZ twins, twin individuals and singletons from large cohorts in Australia/New Zealand, Europe, and the USA were carefully screened to exclude twins born after use of ARTs. Genetic association analyses by cohort were followed by meta-analysis, phenome wide association studies (PheWAS), in silico and in vivo annotations, and Zebrafish functional validation. MAIN RESULTS AND THE ROLE OF CHANCE: This study enlarges the sample size considerably from previous efforts, finding four genome-wide significant loci, including two novel signals and a further two novel genes that are implicated by gene level enrichment analyses. The novel loci, GNRH1 and FSHR, have well-established roles in female reproduction whereas ZFPM1 and IPO8 have not previously been implicated in female fertility. We found significant genetic correlations with multiple aspects of female reproduction and body size as well as evidence for significant selection against DZ twinning during human evolution. The 26 top single nucleotide polymorphisms (SNPs) from our GWAMA in European-origin participants weakly predicted the crude twinning rates in 47 non-European populations (r = 0.23 between risk score and population prevalence, s.e. 0.11, 1-tail P = 0.058) indicating that genome-wide association studies (GWAS) are needed in African and Asian populations to explore the causes of their respectively high and low DZ twinning rates. In vivo functional tests in zebrafish for IPO8 validated its essential role in female, but not male, fertility. In most regions, risk SNPs linked to known expression quantitative trait loci (eQTLs). Top SNPs were associated with in vivo reproductive hormone levels with the top pathways including hormone ligand binding receptors and the ovulation cycle. LARGE SCALE DATA: The full DZT GWAS summary statistics will made available after publication through the GWAS catalog (https://www.ebi.ac.uk/gwas/). LIMITATIONS, REASONS FOR CAUTION: Our study only included European ancestry cohorts. Inclusion of data from Africa (with the highest twining rate) and Asia (with the lowest rate) would illuminate further the biology of twinning and female fertility. WIDER IMPLICATIONS OF THE FINDINGS: About one in 40 babies born in the world is a twin and there is much speculation on why twinning runs in families. We hope our results will inform investigations of ovarian response in new and existing ARTs and the causes of female infertility. STUDY FUNDING/COMPETING INTEREST(S): Support for the Netherlands Twin Register came from the Netherlands Organization for Scientific Research (NWO) and The Netherlands Organization for Health Research and Development (ZonMW) grants, 904-61-193, 480-04-004, 400-05-717, Addiction-31160008, 911-09-032, Biobanking and Biomolecular Resources Research Infrastructure (BBMRI.NL, 184.021.007), Royal Netherlands Academy of Science Professor Award (PAH/6635) to DIB, European Research Council (ERC-230374), Rutgers University Cell and DNA Repository (NIMH U24 MH068457-06), the Avera Institute, Sioux Falls, South Dakota (USA) and the National Institutes of Health (NIH R01 HD042157-01A1) and the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health and Grand Opportunity grants 1RC2 MH089951. The QIMR Berghofer Medical Research Institute (QIMR) study was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia (241944, 339462, 389927, 389875, 389891, 389892, 389938, 443036, 442915, 442981, 496610, 496739, 552485, 552498, 1050208, 1075175). L.Y. is funded by Australian Research Council (Grant number DE200100425). The Minnesota Center for Twin and Family Research (MCTFR) was supported in part by USPHS Grants from the National Institute on Alcohol Abuse and Alcoholism (AA09367 and AA11886) and the National Institute on Drug Abuse (DA05147, DA13240, and DA024417). The Women's Genome Health Study (WGHS) was funded by the National Heart, Lung, and Blood Institute (HL043851 and HL080467) and the National Cancer Institute (CA047988 and UM1CA182913), with support for genotyping provided by Amgen. Data collection in the Finnish Twin Registry has been supported by the Wellcome Trust Sanger Institute, the Broad Institute, ENGAGE-European Network for Genetic and Genomic Epidemiology, FP7-HEALTH-F4-2007, grant agreement number 201413, National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, AA-09203, AA15416, and K02AA018755) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073 and 336823 to J. Kaprio). TwinsUK is funded by the Wellcome Trust, Medical Research Council, Versus Arthritis, European Union Horizon 2020, Chronic Disease Research Foundation (CDRF), Zoe Ltd and the National Institute for Health Research (NIHR) Clinical Research Network (CRN) and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. For NESDA, funding was obtained from the Netherlands Organization for Scientific Research (Geestkracht program grant 10000-1002), the Center for Medical Systems Biology (CSMB, NVVO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), VU University's Institutes for Health and Care Research (EMGO+) and Neuroscience Campus Amsterdam, University Medical Center Groningen, Leiden University Medical Center, National Institutes of Health (NIH, ROI D0042157-01A, MH081802, Grand Opportunity grants 1 RC2 Ml-1089951 and IRC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Computing was supported by BiG Grid, the Dutch e-Science Grid, which is financially supported by NWO. Work in the Del Bene lab was supported by the Programme Investissements d'Avenir IHU FOReSIGHT (ANR-18-IAHU-01). C.R. was supported by an EU Horizon 2020 Marie Sklodowska-Curie Action fellowship (H2020-MSCA-IF-2014 #661527). H.S. and K.S. are employees of deCODE Genetics/Amgen. The other authors declare no competing financial interests. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Fertilidad , Estudio de Asociación del Genoma Completo , Gemelación Dicigótica , Animales , Femenino , Humanos , Embarazo , Proteínas Portadoras/genética , Fertilidad/genética , Hormonas , Proteínas/genética , Estados Unidos , Pez Cebra/genética
5.
Sci Total Environ ; 912: 169550, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38142009

RESUMEN

Environmental DNA (eDNA) is becoming an established tool across the biological and medical sciences. Despite the evident successes and wide adoption of eDNA approaches, some fundamental questions remain. For instance, there is almost a dogma in the field around the superiority of mitochondrial DNA for use in eDNA studies, however robust comparison with nuclear eDNA is widely lacking. The dominance of mitochondrial-based eDNA for animal and plant studies appears to be largely settled, despite a widespread lack of rigorous nuclear eDNA testing. Outside of the source organism the protections conferred on eDNA by the cell, mitochondrial and nuclear membranes are poorly understood, including the contribution of each to eDNA persistence and degradation. Utilizing shotgun sequencing to unbiasedly assess the level of nuclear and mitochondrial eDNA across samples, we reveal stark differences in nuclear versus mitochondrial eDNA persistence and abundance. By focusing too heavily on mitochondrial DNA alone the field is underutilizing eDNA's full potential.


Asunto(s)
ADN Ambiental , ADN Mitocondrial , Animales , Mitocondrias , Plantas , Monitoreo del Ambiente
6.
Twin Res Hum Genet ; : 1-12, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37994447

RESUMEN

Female fertility is a complex trait with age-specific changes in spontaneous dizygotic (DZ) twinning and fertility. To elucidate factors regulating female fertility and infertility, we conducted a genome-wide association study (GWAS) on mothers of spontaneous DZ twins (MoDZT) versus controls (3273 cases, 24,009 controls). This is a follow-up study to the Australia/New Zealand (ANZ) component of that previously reported (Mbarek et al., 2016), with a sample size almost twice that of the entire discovery sample meta-analysed in the previous article (and five times the ANZ contribution to that), resulting from newly available additional genotyping and representing a significant increase in power. We compare analyses with and without male controls and show unequivocally that it is better to include male controls who have been screened for recent family history, than to use only female controls. Results from the SNP based GWAS identified four genomewide significant signals, including one novel region, ZFPM1 (Zinc Finger Protein, FOG Family Member 1), on chromosome 16. Previous signals near FSHB (Follicle Stimulating Hormone beta subunit) and SMAD3 (SMAD Family Member 3) were also replicated (Mbarek et al., 2016). We also ran the GWAS with a dominance model that identified a further locus ADRB2 on chr 5. These results have been contributed to the International Twinning Genetics Consortium for inclusion in the next GWAS meta-analysis (Mbarek et al., in press).

7.
Vet Sci ; 10(7)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37505827

RESUMEN

Fibropapillomatosis (FP) is a neoplastic disease most often found in green turtles (Chelonia mydas). Afflicted turtles are burdened with potentially debilitating tumors concentrated externally on the soft tissues, plastron, and eyes and internally on the lungs, kidneys, and the heart. Clinical signs occur at various levels, ranging from mild disease to severe debilitation. Tumors can both progress and regress in affected turtles, with outcomes ranging from death due to the disease to complete regression. Since its official description in the scientific literature in 1938, tumor growth rates have been rarely documented. In addition, FP tumors come in two very different morphologies; yet, to our knowledge, there have been no quantified differences in growth rates between tumor types. FP tumors are often rugose in texture, with a polypoid to papillomatous morphology, and may or may not be pedunculated. In other cases, tumors are smooth, with a skin-like surface texture and little to no papillose structures. In our study, we assessed growth-rate differences between rugose and smooth tumor morphologies in a rehabilitation setting. We measured average biweekly tumor growth over time in green turtles undergoing rehabilitation at the University of Florida Whitney Laboratory Sea Turtle Hospital in St. Augustine, Florida, and compared growth between rugose and smooth tumors. Our results demonstrate that both rugose and smooth tumors follow a similar active growth progression pattern, but rugose tumors grew at significantly faster rates (p = 0.013) than smooth ones. We also documented regression across several examined tumors, ranging from -0.19% up to -10.8% average biweekly negative growth. Our study offers a first-ever assessment of differential growth between tumor morphologies and an additional diagnostic feature that may lead to a more comprehensive understanding and treatment of the disease. We support the importance of tumor morphological categorization (rugose versus smooth) being documented in future FP hospital- and field-based health assessments.

8.
Nat Ecol Evol ; 7(6): 873-888, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37188965

RESUMEN

The field of environmental DNA (eDNA) is advancing rapidly, yet human eDNA applications remain underutilized and underconsidered. Broader adoption of eDNA analysis will produce many well-recognized benefits for pathogen surveillance, biodiversity monitoring, endangered and invasive species detection, and population genetics. Here we show that deep-sequencing-based eDNA approaches capture genomic information from humans (Homo sapiens) just as readily as that from the intended target species. We term this phenomenon human genetic bycatch (HGB). Additionally, high-quality human eDNA could be intentionally recovered from environmental substrates (water, sand and air), holding promise for beneficial medical, forensic and environmental applications. However, this also raises ethical dilemmas, from consent, privacy and surveillance to data ownership, requiring further consideration and potentially novel regulation. We present evidence that human eDNA is readily detectable from 'wildlife' environmental samples as human genetic bycatch, demonstrate that identifiable human DNA can be intentionally recovered from human-focused environmental sampling and discuss the translational and ethical implications of such findings.


Asunto(s)
ADN Ambiental , Humanos , ADN Ambiental/análisis , Monitoreo del Ambiente , Biodiversidad , ADN , Genómica
9.
Anal Chem ; 95(22): 8613-8620, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229528

RESUMEN

We report methods that improve the quantification of digital bead assays (DBA)─such as the digital enzyme-linked immunosorbent assay (ELISA)─that have found widespread use for high sensitivity measurement of proteins in clinical research and diagnostics. In digital ELISA, proteins are captured on beads, labeled with enzymes, individual beads are interrogated for activity from one or more enzymes, and the average number of enzymes per bead (AEB) is determined based on Poisson statistics. The widespread use of digital ELISA has revealed limitations to the original approaches to quantification that can lead to inaccurate AEB. Here, we have addressed the inaccuracy in AEB due to deviations from Poisson distribution in a digital ELISA for Aß-40 by changing the AEB calculation from a fixed threshold between digital counting and average normalized intensity to a smooth, continuous combination of digital counting and intensity. We addressed issues with determining the average product fluorescence intensity from single enzymes on beads by allowing outlier, high intensity arrays to be removed from average intensities, and by permitting the use of a wider range of arrays. These approaches improved the accuracy of a digital ELISA for tau protein that was affected by aggregated detection antibodies. We increased the dynamic range of a digital ELISA for IL-17A from AEB ∼25 to ∼130 by combining long and short exposure images at the product emission wavelength to create virtual images. The methods reported will significantly improve the accuracy and robustness of DBA based on imaging─such as single molecule arrays (Simoa)─and flow detection.


Asunto(s)
Anticuerpos , Proteínas , Ensayo de Inmunoadsorción Enzimática/métodos
10.
Br J Dermatol ; 188(6): 770-776, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-36879448

RESUMEN

BACKGROUND: Population-wide screening for melanoma is not cost-effective, but genetic characterization could facilitate risk stratification and targeted screening. Common Melanocortin-1 receptor (MC1R) red hair colour (RHC) variants and Microphthalmia-associated transcription factor (MITF) E318K separately confer moderate melanoma susceptibility, but their interactive effects are relatively unexplored. OBJECTIVES: To evaluate whether MC1R genotypes differentially affect melanoma risk in MITF E318K+ vs. E318K- individuals. MATERIALS AND METHODS: Melanoma status (affected or unaffected) and genotype data (MC1R and MITF E318K) were collated from research cohorts (five Australian and two European). In addition, RHC genotypes from E318K+ individuals with and without melanoma were extracted from databases (The Cancer Genome Atlas and Medical Genome Research Bank, respectively). χ2 and logistic regression were used to evaluate RHC allele and genotype frequencies within E318K+/- cohorts depending on melanoma status. Replication analysis was conducted on 200 000 general-population exomes (UK Biobank). RESULTS: The cohort comprised 1165 MITF E318K- and 322 E318K+ individuals. In E318K- cases MC1R R and r alleles increased melanoma risk relative to wild type (wt), P < 0.001 for both. Similarly, each MC1R RHC genotype (R/R, R/r, R/wt, r/r and r/wt) increased melanoma risk relative to wt/wt (P < 0.001 for all). In E318K+ cases, R alleles increased melanoma risk relative to the wt allele [odds ratio (OR) 2.04 (95% confidence interval 1.67-2.49); P = 0.01], while the r allele risk was comparable with the wt allele [OR 0.78 (0.54-1.14) vs. 1.00, respectively]. E318K+ cases with the r/r genotype had a lower but not significant melanoma risk relative to wt/wt [OR 0.52 (0.20-1.38)]. Within the E318K+ cohort, R genotypes (R/R, R/r and R/wt) conferred a significantly higher risk compared with non-R genotypes (r/r, r/wt and wt/wt) (P < 0.001). UK Biobank data supported our findings that r did not increase melanoma risk in E318K+ individuals. CONCLUSIONS: RHC alleles/genotypes modify melanoma risk differently in MITF E318K- and E318K+ individuals. Specifically, although all RHC alleles increase risk relative to wt in E318K- individuals, only MC1R R increases melanoma risk in E318K+ individuals. Importantly, in the E318K+ cohort the MC1R r allele risk is comparable with wt. These findings could inform counselling and management for MITF E318K+ individuals.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Alelos , Receptor de Melanocortina Tipo 1/genética , Factor de Transcripción Asociado a Microftalmía/genética , Australia/epidemiología , Melanoma/genética , Genotipo , Predisposición Genética a la Enfermedad/genética , Neoplasias Cutáneas/genética
11.
Proc Natl Acad Sci U S A ; 120(7): e2201076120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36749728

RESUMEN

Sea turtles represent an ancient lineage of marine vertebrates that evolved from terrestrial ancestors over 100 Mya. The genomic basis of the unique physiological and ecological traits enabling these species to thrive in diverse marine habitats remains largely unknown. Additionally, many populations have drastically declined due to anthropogenic activities over the past two centuries, and their recovery is a high global conservation priority. We generated and analyzed high-quality reference genomes for the leatherback (Dermochelys coriacea) and green (Chelonia mydas) turtles, representing the two extant sea turtle families. These genomes are highly syntenic and homologous, but localized regions of noncollinearity were associated with higher copy numbers of immune, zinc-finger, and olfactory receptor (OR) genes in green turtles, with ORs related to waterborne odorants greatly expanded in green turtles. Our findings suggest that divergent evolution of these key gene families may underlie immunological and sensory adaptations assisting navigation, occupancy of neritic versus pelagic environments, and diet specialization. Reduced collinearity was especially prevalent in microchromosomes, with greater gene content, heterozygosity, and genetic distances between species, supporting their critical role in vertebrate evolutionary adaptation. Finally, diversity and demographic histories starkly contrasted between species, indicating that leatherback turtles have had a low yet stable effective population size, exhibit extremely low diversity compared with other reptiles, and harbor a higher genetic load compared with green turtles, reinforcing concern over their persistence under future climate scenarios. These genomes provide invaluable resources for advancing our understanding of evolution and conservation best practices in an imperiled vertebrate lineage.


Asunto(s)
Tortugas , Animales , Ecosistema , Dinámica Poblacional
12.
Lab Chip ; 23(5): 818-847, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625134

RESUMEN

This paper reviews methods for detecting proteins based on molecular digitization, i.e., the isolation and detection of single protein molecules or singulated ensembles of protein molecules. The single molecule resolution of these methods has resulted in significant improvements in the sensitivity of immunoassays beyond what was possible using traditional "analog" methods: the sensitivity of some digital immunoassays approach those of methods for measuring nucleic acids, such as the polymerase chain reaction (PCR). The greater sensitivity of digital protein detection has resulted in immuno-diagnostics with high potential societal impact, e.g., the early diagnosis and therapeutic intervention of Alzheimer's Disease. In this review, we will first provide the motivation for developing digital protein detection methods given the limitations in the sensitivity of analog methods. We will describe the paradigm shift catalyzed by single molecule detection, and will describe in detail one digital approach - which we call digital bead assays (DBA) - based on the capture and labeling of proteins on beads, identifying "on" and "off" beads, and quantification using Poisson statistics. DBA based on the single molecule array (Simoa) technology have sensitivities down to attomolar concentrations, equating to ∼10 proteins in a 200 µL sample. We will describe the concept behind DBA, the different single molecule labels used, the ways of analyzing beads (imaging of arrays and flow), the binding reagents and substrates used, and integration of these technologies into fully automated and miniaturized systems. We provide an overview of emerging approaches to digital protein detection, including those based on digital detection of nucleic acids labels, single nanoparticle detection, measurements using nanopores, and methods that exploit the kinetics of single molecule binding. We outline the initial impact of digital protein detection on clinical measurements, highlighting the importance of customized assay development and translational clinical research. We highlight the use of DBA in the measurement of neurological protein biomarkers in blood, and how these higher sensitivity methods are changing the diagnosis and treatment of neurological diseases. We conclude by summarizing the status of digital protein detection and suggest how the lab-on-a-chip community might drive future innovations in this field.


Asunto(s)
Enfermedad de Alzheimer , Ácidos Nucleicos , Humanos , Proteínas/análisis , Inmunoensayo , Ácidos Nucleicos/análisis , Nanotecnología
13.
Life Sci Alliance ; 5(10)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038253

RESUMEN

The RAS-RAF-MEK-ERK pathway is hyperactivated in most malignant melanomas, and mutations in BRAF or NRAS account for most of these cases. BRAF inhibitors (BRAFi) are highly efficient for treating patients with BRAFV600E mutations, but tumours frequently acquire resistance within a few months. Multiple resistance mechanisms have been identified, due to mutations or network adaptations that revive ERK signalling. We have previously shown that RAF proteins inhibit the MST2 proapoptotic pathway in a kinase-independent fashion. Here, we have investigated the role of the MST2 pathway in mediating resistance to BRAFi. We show that the BRAFV600E mutant protein, but not the wild-type BRAF protein, binds to MST2 inhibiting its proapoptotic signalling. Down-regulation of MST2 reduces BRAFi-induced apoptosis. In BRAFi-resistant cell lines, MST2 pathway proteins are down-regulated by ubiquitination and subsequent proteasomal degradation rendering cells refractory to MST2 pathway-induced apoptosis. Restoration of apoptosis can be achieved by increasing MST2 pathway protein expression using proteasome inhibitors. In summary, we show that the MST2 pathway plays a role in the acquisition of BRAFi resistance in melanoma.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Línea Celular Tumoral , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética
14.
J Immunol Methods ; 508: 113311, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35787394

RESUMEN

We have developed an ultrasensitive multiplexed immunoassay using 384-well microtiter plates capable of detecting proteins at subfemtomolar concentrations that requires as little as 2.5 µL of sample. Arrays of up to 4 capture antibodies were patterned on the bottom of the wells of a 384-well plate either by directly printing the capture antibodies or by printing anti-peptide tag anchor antibodies and incubating these arrays with capture antibodies conjugated to the corresponding peptide tags ("customized" assays). Samples were incubated with the antibody arrays and shaken orbitally at 2000 rpm to achieve the greatest sensitivity. Chemiluminescence (CL) from immunocomplexes labeled with horseradish peroxidase was imaged across the entire plate to quantify the amount of protein bound to each antibody spot of the arrays. The 384-well assay had a throughput 5-fold greater than 96-well plates that was achieved from simultaneous imaging of CL in all 384-wells and the use of automated pipettors to allow parallel processing of 384 assays. We developed 4 assays based on the 384-well CL ELISA: a direct print assay for IL-10 (limit of detection (LOD) = 0.075 fM); a customized assay for IL-6 (0.22 fM); a customized pharmacokinetic (PK) assay for measuring adalimumab (7.3 pg/mL); and a customized 4-plex assay for IL-5 (0.1 fM), IL-6 (0.52 fM), IL-10 (0.2 fM), and TNF-α (3.2 fM). The sensitivity and precision of the cytokine assays were comparable to current ultrasensitive protein detection methods in 96-well formats. The PK assay for adalimumab was 650 times more sensitive than a commercially available 96-well plate ELISA. We used the 384-well CL ELISAs to measure endogenous levels of the cytokines in the serum and plasma of healthy humans: the mean concentrations and precision were comparable to those from 96-well immunoassays. This 384-well format with subfemtomolar sensitivity will enable ultrasensitive multiplexed immunoassays to be performed with higher throughput and lower sample volumes than currently possible, a particularly important capability for clinical studies in drug development.


Asunto(s)
Interleucina-10 , Interleucina-6 , Adalimumab , Anticuerpos , Citocinas , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoensayo/métodos
15.
Cancers (Basel) ; 14(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35626014

RESUMEN

Melanoma incidence rates are high among individuals with fair skin and multiple naevi. Established prognostic factors are tumour specific, and less is known about prognostic host factors. A total of 556 stage I to stage IV melanoma patients from Germany with phenotypic and disease-specific data were analysed; 64 of these patients died of melanoma after a median follow-up time of 8 years. Germline DNA was assessed by the HumanCoreExome BeadChip and data of 356,384 common polymorphisms distributed over all 23 chromosomes were used for a genome-wide analysis. A suggestive genome-wide significant association of the intronic allele rs7551288*A with diminished melanoma-specific survival was detected (p = 2 × 10-6). The frequency of rs7551288*A was 0.43 and was not associated with melanoma risk, hair and eye colour, tanning and total naevus count. Cox regression multivariate analyses revealed a 5.31-fold increased risk of melanoma-specific death for patients with the rs7551288 A/A genotype, independent of tumour thickness, ulceration and stage of disease at diagnoses. The variant rs7551288 belongs to the DHCR24 gene, which encodes Seladin-1, an enzyme involved in the biosynthesis of cholesterol. Further investigations are needed to confirm this genetic variant as a novel prognostic biomarker and to explore whether specific treatment strategies for melanoma patients might be derived from it.

16.
Twin Res Hum Genet ; 25(2): 63-66, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35593089

RESUMEN

It is widely recognized that dizygotic twinning (DZT) runs in families, but estimates of heritability from twin and family data are remarkably scarce and vary considerably. Here, we traced seven large, sometimes historical, multigeneration pedigrees from West Africans, fin de siècle French Jews, Canadians (two pedigrees), and the French royal family, in which twin births were recorded. We estimated heritability of twinning (of all types) as zygosity information was not available, diluting the true DZT heritability by a third or so. The estimates in the range 8-20% are remarkably consistent across time (8-19 generations) and ethnicities and also consistent with twin and family estimates.


Asunto(s)
Gemelos Dicigóticos , Gemelos Monocigóticos , Canadá , Humanos , Linaje , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética
17.
Mol Ecol Resour ; 22(7): 2471-2493, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35377560

RESUMEN

Elusive aquatic wildlife, such as endangered sea turtles, are difficult to monitor and conserve. As novel molecular and genetic technologies develop, it is possible to adapt and optimize them for wildlife conservation. One such technology is environmental (e)DNA - the detection of DNA shed from organisms into their surrounding environments. We developed species-specific green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtle probe-based qPCR assays, which can detect and quantify sea turtle eDNA in controlled (captive tank water and sand samples) and free ranging (oceanic water samples and nesting beach sand) settings. eDNA detection complemented traditional in-water sea turtle monitoring by enabling detection even when turtles were not visually observed. Furthermore, we report that high throughput shotgun sequencing of eDNA sand samples enabled sea turtle population genetic studies and pathogen monitoring, demonstrating that noninvasive eDNA techniques are viable and efficient alternatives to biological sampling (e.g., biopsies and blood draws). Genetic information was obtained from sand many hours after nesting events, without having to observe or interact with the target individual. This greatly reduces the sampling stress experienced by nesting mothers and emerging hatchlings, and avoids sacrificing viable eggs for genetic analysis. The detection of pathogens from sand indicates significant potential for increased wildlife disease monitoring capacity and viral variant surveillance. Together, these results demonstrate the potential of eDNA approaches to ultimately help understand and conserve threatened species such as sea turtles.


Asunto(s)
ADN Ambiental , Tortugas , Animales , ADN Ambiental/genética , Metagenómica , Arena , Tortugas/genética , Agua
18.
J Invest Dermatol ; 142(6): 1607-1616, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34813871

RESUMEN

Genome-wide association studies (GWAS) have identified a number of risk loci for cutaneous melanoma. Cutaneous melanoma shares overlapping genetic risk (genetic correlation) with a number of other traits, including its risk factors such as sunburn propensity. This genetic correlation can be exploited to identify additional cutaneous melanoma risk loci by multitrait analysis of GWAS (MTAG). We used bivariate linkage disequilibrium-score regression score regression to identify traits that are genetically correlated with clinically confirmed cutaneous melanoma and then used publicly available GWAS for these traits in a multitrait analysis of GWAS. Multitrait analysis of GWAS allows GWAS to be combined while accounting for sample overlap and incomplete genetic correlation. We identified a total of 74 genome-wide independent loci, 19 of them were not previously reported in the input cutaneous melanoma GWAS meta-analysis. Of these loci, 55 were replicated (P < 0.05/74, Bonferroni-corrected P-value in two independent cutaneous melanoma replication cohorts from Melanoma Institute Australia and 23andMe, Inc. Among the, to our knowledge, previously unreported cutaneous melanoma loci are ones that have also been associated with autoimmune traits including rs715199 near LPP and rs10858023 near AP4B1. Our analysis indicates genetic correlation between traits can be leveraged to identify new risk genes for cutaneous melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Melanoma/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Neoplasias Cutáneas/genética , Melanoma Cutáneo Maligno
20.
Animals (Basel) ; 11(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34827808

RESUMEN

Fibropapillomatosis (FP), a debilitating, infectious neoplastic disease, is rarely reported in endangered Kemp's ridley sea turtles (Lepidochelys kempii). With this study, we describe FP and the associated chelonid alphaherpesvirus 5 (ChHV5) in Kemp's ridley turtles encountered in the United States during 2006-2020. Analysis of 22 case reports of Kemp's ridley turtles with FP revealed that while the disease was mild in most cases, 54.5% were adult turtles, a reproductively valuable age class whose survival is a priority for population recovery. Of 51 blood samples from tumor-free turtles and 12 tumor samples from turtles with FP, 7.8% and 91.7%, respectively, tested positive for ChHV5 DNA via quantitative polymerase chain reaction (qPCR). Viral genome shotgun sequencing and phylogenetic analysis of six tumor samples show that ChHV5 sequences in Kemp's ridley turtles encountered in the Gulf of Mexico and northwestern Atlantic cluster with ChHV5 sequences identified in green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles from Hawaii, the southwestern Atlantic Ocean, and the Caribbean. Results suggest an interspecific, spatiotemporal spread of FP among Kemp's ridley turtles in regions where the disease is enzootic. Although FP is currently uncommon in this species, it remains a health concern due to its uncertain pathogenesis and potential relationship with habitat degradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA