Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neuroinflammation ; 21(1): 108, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664840

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.


Asunto(s)
Microglía , Ratas Endogámicas F344 , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , alfa-Sinucleína , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , alfa-Sinucleína/metabolismo , Ratas , Masculino , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pirroles/farmacología , Aminopiridinas/farmacología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/efectos de los fármacos , Modelos Animales de Enfermedad
2.
NPJ Parkinsons Dis ; 10(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172128

RESUMEN

Examination of early phases of synucleinopathy when inclusions are present, but long before neurodegeneration occurs, is critical to both understanding disease progression and the development of disease modifying therapies. The rat alpha-synuclein (α-syn) preformed fibril (PFF) model induces synchronized synucleinopathy that recapitulates the pathological features of Parkinson's disease (PD) and can be used to study synucleinopathy progression. In this model, phosphorylated α-syn (pSyn) inclusion-containing neurons and reactive microglia (major histocompatibility complex-II immunoreactive) peak in the substantia nigra pars compacta (SNpc) months before appreciable neurodegeneration. However, it remains unclear which specific genes are driving these phenotypic changes. To identify transcriptional changes associated with early synucleinopathy, we used laser capture microdissection of the SNpc paired with RNA sequencing (RNASeq). Precision collection of the SNpc allowed for the assessment of differential transcript expression in the nigral dopamine neurons and proximal glia. Transcripts upregulated in early synucleinopathy were mainly associated with an immune response, whereas transcripts downregulated were associated with neurotransmission and the dopamine pathway. A subset of 29 transcripts associated with neurotransmission/vesicular release and the dopamine pathway were verified in a separate cohort of males and females to confirm reproducibility. Within this subset, fluorescent in situ hybridization (FISH) was used to localize decreases in the Syt1 and Slc6a3 transcripts to pSyn inclusion-containing neurons. Identification of transcriptional changes in early synucleinopathy provides insight into the molecular mechanisms driving neurodegeneration.

3.
bioRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37577533

RESUMEN

Age is a major common risk factor underlying neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Previous studies reported that chronological age correlates with differential gene expression across different brain regions. However, prior datasets have not disambiguated whether expression associations with age are due to changes in cell numbers and/or gene expression per cell. In this study, we leveraged single nucleus RNA-sequencing (snRNAseq) to examine changes in cell proportions and transcriptomes in four different brain regions, each from 12 donors aged 20-30 years (young) or 60-85 years (old). We sampled 155,192 nuclei from two cortical regions (entorhinal cortex and middle temporal gyrus) and two subcortical regions (putamen and subventricular zone) relevant to neurodegenerative diseases or the proliferative niche. We found no changes in cellular composition of different brain regions with healthy aging. Surprisingly, we did find that each brain region has a distinct aging signature, with only minor overlap in differentially associated genes across regions. Moreover, each cell type shows distinct age-associated expression changes, including loss of protein synthesis genes in cortical inhibitory neurons, axonogenesis genes in excitatory neurons and oligodendrocyte precursor cells, enhanced gliosis markers in astrocytes and disease-associated markers in microglia, and genes critical for neuron-glia communication. Importantly, we find cell type-specific enrichments of age associations with genes nominated by Alzheimer's disease and Parkinson's disease genome-wide association studies (GWAS), such as apolipoprotein E (APOE), and leucine-rich repeat kinase 2 (LRRK2) in microglia that are independent of overall expression levels across cell types. We present this data as a new resource which highlights, first, region- and cell type-specific transcriptomic changes in healthy aging that may contribute to selective vulnerability and, second, provide context for testing GWAS-nominated disease risk genes in relevant subtypes and developing more targeted therapeutic strategies. The data is readily accessible without requirement for extensive computational support in a public website, https://brainexp-hykyffa56a-uc.a.run.app/.

4.
Res Sq ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205534

RESUMEN

Background: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously described the time course of microglial major-histocompatibility complex-II (MHC-II) expression and alterations in microglia morphology in the PFF model in rats. Specifically, the peaks of α-syn inclusion formation, MHC-II expression, and reactive morphology in the substantia nigra pars compacta (SNpc) all occur two months post PFF injection, months before neurodegeneration occurs. These results suggest that activated microglia may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether microglial depletion could impact the magnitude of α-syn aggregation, nigrostriatal degeneration, or related microglial activation during the α-syn PFF model. Methods: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600mg/kg), a colony stimulating factor-1 receptor (CSF1R) inhibitor, to deplete microglia for a period of either two or six months. Results: PLX3397B administration resulted in significant depletion (45-53%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. Microglial depletion did not impact accumulation of phosphorylated α-syn (pSyn) within SNpc neurons and did not alter pSyn associated microglial reactivity or expression of MHC-II. Further, microglial depletion did not impact SNpc neuron degeneration. Paradoxically, long term microglial depletion resulted in increased soma size of remaining microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. Conclusions: Collectively, our results suggest that microglial depletion is not a viable disease-modifying strategy for PD and that partial microglial depletion can induce a heightened proinflammatory state in remaining microglia.

5.
NPJ Parkinsons Dis ; 8(1): 61, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610264

RESUMEN

ß2-adrenoreceptor (ß2AR) agonists have been associated with a decreased risk of developing Parkinson's disease (PD) and are hypothesized to decrease expression of both alpha-synuclein mRNA (Snca) and protein (α-syn). Effects of ß2AR agonist clenbuterol on the levels of Snca mRNA and α-syn protein were evaluated in vivo (rats and mice) and in rat primary cortical neurons by two independent laboratories. A modest decrease in Snca mRNA in the substantia nigra was observed after a single acute dose of clenbuterol in rats, however, this decrease was not maintained after multiple doses. In contrast, α-syn protein levels remained unchanged in both single and multiple dosing paradigms. Furthermore, clenbuterol did not decrease Snca in cultured rat primary cortical neurons, or decrease Snca or α-syn in mice. Additionally, compared to the single-dose paradigm, repeat dosing resulted in substantially lower levels of clenbuterol in plasma and brain tissue in rodents. Based on our observations of a transient decrease in Snca and no effect on α-syn protein in this preclinical study, these data support the conclusion that clenbuterol is not likely a viable disease-modifying strategy for PD.

6.
Parkinsonism Relat Disord ; 89: 41-47, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34218047

RESUMEN

BACKGROUND: Alpha-synuclein (α-syn) preformed fibril (PFF)-induced pathology can be used to study the features and progression of synucleinopathies, such as Parkinson's disease. Intrastriatal injection of mouse α-syn PFFs produce accumulation of α-syn pathology in both mice and rats. Previous studies in mice have revealed that greater sequence homology between the α-syn amino acid sequence used to produce PFFs with that of the endogenous host α-syn increases α-syn pathology in vivo. NEW METHODS: Based on the prediction that greater sequence homology will result in more α-syn pathology, PFFs generated from recombinant rat α-syn (rPFFs) were used instead of PFFs produced from recombinant mouse α-syn (mPFFs), which are normally used in the model. Rats received unilateral intrastriatal injections of either rPFFs or mPFFs and accumulation of α-syn phosphorylated at serine 129 (pSyn) was examined at 1-month post-surgery. RESULTS: Rats injected with mPFFs exhibited abundant accumulation of α-syn inclusions in the substantia nigra and cortical regions, whereas in rats injected with rPFFs had significantly fewer SNpc neurons containing pSyn inclusions (≈60% fewer) and little, if any, pSyn inclusions were observed in the cortex. CONCLUSIONS: Our results suggest that additional factors beyond the degree of sequence homology between host α-syn and injected recombinant α-syn impact efficiency of seeding and subsequent inclusion formation. More practically, these findings caution against the use of rPFFs in the rat preformed fibril model.


Asunto(s)
Sinucleinopatías/metabolismo , Sinucleinopatías/patología , alfa-Sinucleína , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Proteínas Recombinantes , Sustancia Negra/metabolismo , Sustancia Negra/patología
7.
Neurobiol Dis ; 148: 105175, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33188920

RESUMEN

Prevalent in approximately 20% of the worldwide human population, the rs6265 (also called 'Val66Met') single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor (BDNF) is a common genetic variant that can alter therapeutic responses in individuals with Parkinson's disease (PD). Possession of the variant Met allele results in decreased activity-dependent release of BDNF. Given the resurgent worldwide interest in neural transplantation for PD and the biological relevance of BDNF, the current studies examined the effects of the rs6265 SNP on therapeutic efficacy and side-effect development following primary dopamine (DA) neuron transplantation. Considering the significant reduction in BDNF release associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF signaling contributes to the limited clinical benefit observed in a subpopulation of PD patients despite robust survival of grafted DA neurons, and further, that this mutation contributes to the development of aberrant graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat model of the rs6265 BDNF SNP to examine for the first time the influence of a common genetic polymorphism on graft survival, functional efficacy, and side-effect liability, comparing these parameters between wild-type (Val/Val) rats and those homozygous for the variant Met allele (Met/Met). Counter to our hypothesis, the current research indicates that Met/Met rats show enhanced graft-associated therapeutic efficacy and a paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type rats. However, consistent with our hypothesis, we demonstrate that the rs6265 genotype in the host rat is strongly linked to development of GID, and that this behavioral phenotype is significantly correlated with neurochemical signatures of atypical glutamatergic neurotransmission by grafted DA neurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Trasplante de Células/métodos , Neuronas Dopaminérgicas/trasplante , Discinesias/genética , Animales , Antiparkinsonianos/efectos adversos , Trasplante de Células/efectos adversos , Neuronas Dopaminérgicas/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesias/etiología , Embrión de Mamíferos , Técnicas de Sustitución del Gen , Levodopa/efectos adversos , Mesencéfalo/citología , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Simpaticolíticos/toxicidad , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
8.
Neurobiol Dis ; 130: 104525, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31276792

RESUMEN

Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16 µg of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2 months and bilateral loss of nigral dopamine neurons at 6 months. Unilateral 16 µg PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6 months. Bilateral injection of 16 µg α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16 µg PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.


Asunto(s)
Cuerpo Estriado/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratas , Ratas Endogámicas F344 , Sustancia Negra/patología , Sinucleinopatías/patología
9.
J Vis Exp ; (148)2019 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-31205308

RESUMEN

Use of the in vivo alpha-synuclein preformed fibril (α-syn PFF) model of synucleinopathy is gaining popularity among researchers aiming to model Parkinson's disease synucleinopathy and nigrostriatal degeneration. The standardization of α-syn PFF generation and in vivo application is critical in order to ensure consistent, robust α-syn pathology. Here, we present a detailed protocol for the generation of fibrils from monomeric α-syn, post-fibrilization quality control steps, and suggested parameters for successful neurosurgical injection of α-syn PFFs into rats or mice. Starting with monomeric α-syn, fibrilization occurs over a 7-day incubation period while shaking at optimal buffer conditions, concentration, and temperature. Post-fibrilization quality control is assessed by the presence of pelletable fibrils via sedimentation assay, the formation of amyloid conformation in the fibrils with a thioflavin T assay, and electron microscopic visualization of the fibrils. Whereas successful validation using these assays is necessary for success, they are not sufficient to guarantee PFFs will seed α-syn inclusions in neurons, as such aggregation activity of each PFF batch should be tested in cell culture or in pilot animal cohorts. Prior to use, PFFs must be sonicated under precisely standardized conditions, followed by examination using electron microscopy or dynamic light scattering to confirm fibril lengths are within optimal size range, with an average length of 50 nm. PFFs can then be added to cell culture media or used in animals. Pathology detectable by immunostaining for phosphorylated α-syn (psyn; serine 129) is apparent days or weeks later in cell culture and rodent models, respectively.


Asunto(s)
Neuronas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Ratones , Enfermedad de Parkinson , Ratas , Sinucleinopatías
10.
Front Neurosci ; 12: 621, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233303

RESUMEN

Animal models have significantly advanced our understanding of Parkinson's disease (PD). Alpha-synuclein (α-syn) has taken center stage due to its genetic connection to familial PD and localization to Lewy bodies, one pathological hallmark of PD. Animal models developed on the premise of elevated alpha-synuclein via germline manipulation or viral vector-mediated overexpression are used to investigate PD pathophysiology and vet novel therapeutics. While these models represented a step forward compared to their neurotoxicant model predecessors, they rely on overexpression of supraphysiological levels of α-syn to trigger toxicity. However, whereas SNCA-linked familial PD is associated with elevated α-syn, elevated α-syn is not associated with idiopathic PD. Therefore, the defining feature of the α-syn overexpression models may fail to appropriately model idiopathic PD. In the last several years a new model has been developed in which α-syn preformed fibrils are injected intrastriatally and trigger normal endogenous levels of α-syn to misfold and accumulate into Lewy body-like inclusions. Following a defined period of inclusion accumulation, distinct phases of neuroinflammation and progressive degeneration can be detected in the nigrostriatal system. In this perspective, we highlight the fact that levels of α-syn achieved in overexpression models generally exceed those observed in idiopathic and even SNCA multiplication-linked PD. This raises the possibility that supraphysiological α-syn expression may drive pathophysiological mechanisms not relevant to idiopathic PD. We argue in this perspective that synucleinopathy triggered to form within the context of normal α-syn expression represents a more faithful animal model of idiopathic PD when examining the role of neuroinflammation or the relationship between a-syn aggregation and toxicity.

11.
J Neuroinflammation ; 15(1): 129, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29716614

RESUMEN

BACKGROUND: Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS: Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS: Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS: Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.


Asunto(s)
Cuerpos de Lewy/patología , Microglía/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Sustancia Negra/patología , alfa-Sinucleína/toxicidad , Animales , Inyecciones Intraventriculares , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Ratas , Ratas Endogámicas F344 , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , alfa-Sinucleína/administración & dosificación
12.
J Neuroinflammation ; 15(1): 169, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843738

RESUMEN

After publication of the original article [1] it was noted that the name of author, D. Luke Fisher, was erroneously typeset in both the PDF and online formats of the manuscript as Luke D. Fisher.

13.
J Parkinsons Dis ; 8(2): 303-322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29400668

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting approximately one-percent of the population over the age of sixty. Although many animal models have been developed to study this disease, each model presents its own advantages and caveats. A unique model has arisen to study the role of alpha-synuclein (aSyn) in the pathogenesis of PD. This model involves the conversion of recombinant monomeric aSyn protein to a fibrillar form-the aSyn pre-formed fibril (aSyn PFF)-which is then injected into the brain or introduced to the media in culture. Although many groups have successfully adopted and replicated the aSyn PFF model, issues with generating consistent pathology have been reported by investigators. To improve the replicability of this model and diminish these issues, The Michael J. Fox Foundation for Parkinson's Research (MJFF) has enlisted the help of field leaders who performed key experiments to establish the aSyn PFF model to provide the research community with guidelines and practical tips for improving the robustness and success of this model. Specifically, we identify key pitfalls and suggestions for avoiding these mistakes as they relate to generating the aSyn PFFs from monomeric protein, validating the formation of pathogenic aSyn PFFs, and using the aSyn PFFs in vivo or in vitro to model PD. With this additional information, adoption and use of the aSyn PFF model should present fewer challenges, resulting in a robust and widely available model of PD.


Asunto(s)
Encéfalo/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Parkinson/metabolismo , Roedores
14.
Sci Rep ; 7(1): 16356, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180681

RESUMEN

Subthalamic nucleus deep brain stimulation (STN DBS) protects dopaminergic neurons of the substantia nigra pars compacta (SNpc) against 6-OHDA and MPTP. We evaluated STN DBS in a parkinsonian model that displays α-synuclein pathology using unilateral, intranigral injections of recombinant adeno-associated virus pseudotype 2/5 to overexpress wildtype human α-synuclein (rAAV2/5 α-syn). A low titer of rAAV2/5 α-syn results in progressive forelimb asymmetry, loss of striatal dopaminergic terminal density and modest loss of SNpc dopamine neurons after eight weeks, corresponding to robust human-Snca expression and no effect on rat-Snca, Th, Bdnf or Trk2. α-syn overexpression increased phosphorylation of ribosomal protein S6 (p-rpS6) in SNpc neurons, a readout of trkB activation. Rats received intranigral injections of rAAV2/5 α-syn and three weeks later received four weeks of STN DBS or electrode implantation that remained inactive. STN DBS did not protect against α-syn-mediated deficits in forelimb akinesia, striatal denervation or loss of SNpc neuron, nor did STN DBS elevate p-rpS6 levels further. ON stimulation, forelimb asymmetry was exacerbated, indicating α-syn overexpression-mediated neurotransmission deficits. These results demonstrate that STN DBS does not protect the nigrostriatal system against α-syn overexpression-mediated toxicity. Whether STN DBS can be protective in other models of synucleinopathy is unknown.


Asunto(s)
Axones/metabolismo , Axones/patología , Estimulación Encefálica Profunda , Expresión Génica , Sustancia Negra/metabolismo , Núcleo Subtalámico/patología , Núcleo Subtalámico/fisiopatología , alfa-Sinucleína/genética , Animales , Conducta Animal , Biomarcadores , Cuerpo Estriado/metabolismo , Dependovirus/genética , Vectores Genéticos/genética , Inmunohistoquímica , Masculino , Modelos Biológicos , Neuronas/metabolismo , Fosforilación , Ratas , Núcleo Subtalámico/metabolismo , Transducción Genética , alfa-Sinucleína/metabolismo
15.
Methods Mol Biol ; 1382: 367-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26611600

RESUMEN

Gene therapy methods are increasingly used to model Parkinson's disease (PD) in animals in an effort to test experimental therapeutics within a more relevant context to disease pathophysiology and neuropathology. We have detailed several criteria that are critical or advantageous to accurately modeling PD in a murine model or in a nonhuman primate. Using these criteria, we then evaluate approaches made to model PD using viral vectors to date, including both adeno-associated viruses and lentiviruses. Lastly, we comment on the consideration of aging as a critical factor for modeling PD.


Asunto(s)
Dependovirus/genética , Lentivirus/genética , Enfermedad de Parkinson/patología , Animales , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos , Ratones , Enfermedad de Parkinson/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...