Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 19: 58-77, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33005703

RESUMEN

Most antibodies display very low brain exposure due to the blood-brain barrier (BBB) preventing their entry into brain parenchyma. Transferrin receptor (TfR) has been used previously to ferry antibodies to the brain by using different formats of bispecific constructs. Tetravalent bispecific tandem immunoglobulin Gs (IgGs) (TBTIs) containing two paratopes for both TfR and protofibrillar forms of amyloid-beta (Aß) peptide were constructed and shown to display higher brain penetration than the parent anti-Aß antibody. Additional structure-based mutations on the TfR paratopes further increased brain exposure, with maximal enhancement up to 13-fold in wild-type mice and an additional 4-5-fold in transgenic (Tg) mice harboring amyloid plaques, the main target of our amyloid antibody. Parenchymal target engagement of extracellular amyloid plaques was demonstrated using in vivo and ex vivo fluorescence imaging as well as histological methods. The best candidates were selected for a chronic study in an amyloid precursor protein (APP) Tg mouse model showing efficacy at reducing brain amyloid load at a lower dose than the corresponding monospecific antibody. TBTIs represent a promising format for enhancing IgG brain penetration using a symmetrical construct and keeping bivalency of the payload antibody.

2.
Alzheimers Res Ther ; 10(1): 117, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486882

RESUMEN

BACKGROUND: Anti-amyloid ß (Aß) immunotherapy represents a major area of drug development for Alzheimer's disease (AD). However, Aß peptide adopts multiple conformations and the pathological forms to be specifically targeted have not been identified. Aß immunotherapy-related vasogenic edema has also been severely dose limiting for antibodies with effector functions binding vascular amyloid such as bapineuzumab. These two factors might have contributed to the limited efficacy demonstrated so far in clinical studies. METHODS: To address these limitations, we have engineered SAR228810, a humanized monoclonal antibody (mAb) with limited Fc effector functions that binds specifically to soluble protofibrillar and fibrillar forms of Aß peptide and we tested it together with its murine precursor SAR255952 in vitro and in vivo. RESULTS: Unlike gantenerumab and BAN2401, SAR228810 and SAR255952 do not bind to Aß monomers, low molecular weight Aß oligomers or, in human brain sections, to Aß diffuse deposits which are not specific of AD pathology. Both antibodies prevent Aß42 oligomer neurotoxicity in primary neuronal cultures. In vivo, SAR255952, a mouse aglycosylated IgG1, dose-dependently prevented brain amyloid plaque formation and plaque-related inflammation with a minimal active dose of 3 mg/kg/week by the intraperitoneal route. No increase in plasma Aß levels was observed with SAR255952 treatment, in line with its lack of affinity for monomeric Aß. The effects of SAR255952 translated into synaptic functional improvement in ex-vivo hippocampal slices. Brain penetration and decoration of cerebral amyloid plaques was documented in live animals and postmortem. SAR255952 (up to 50 mg/kg/week intravenously) did not increase brain microhemorrhages and/or microscopic changes in meningeal and cerebral arteries in old APPSL mice while 3D6, the murine version of bapineuzumab, did. In immunotolerized mice, the clinical candidate SAR228810 demonstrated the same level of efficacy as the murine SAR255952. CONCLUSION: Based on the improved efficacy/safety profile in non-clinical models of SAR228810, a first-in-man single and multiple dose administration clinical study has been initiated in AD patients.


Asunto(s)
Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/inmunología , Anticuerpos Monoclonales Humanizados/administración & dosificación , Encéfalo/inmunología , Inmunoterapia/métodos , Enfermedad de Alzheimer/inmunología , Péptidos beta-Amiloides/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/efectos adversos , Encéfalo/metabolismo , Potenciales Postsinápticos Excitadores/inmunología , Femenino , Hipocampo/inmunología , Hipocampo/fisiopatología , Humanos , Inmunoterapia/efectos adversos , Masculino , Ratones Endogámicos C57BL , Imagen Óptica , Cultivo Primario de Células , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...