Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(10): 2049-2065.e6, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677281

RESUMEN

Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Autofagia , Proteínas Activadoras de GTPasa , Inmunidad de la Planta , Autofagia/fisiología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transporte de Proteínas
2.
Adv Sci (Weinh) ; 11(23): e2400225, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531063

RESUMEN

Accurate quantification of hypersensitive response (HR) programmed cell death is imperative for understanding plant defense mechanisms and developing disease-resistant crop varieties. Here, a phenotyping platform for rapid, continuous-time, and quantitative assessment of HR is demonstrated: Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL). Compared to traditional HR assays, PASTEL significantly improves temporal resolution and has high sensitivity, facilitating detection of microscopic levels of cell death. Validation is performed by transiently expressing the effector protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of cell death is achieved at microscopic intensities, where leaf tissue appears healthy to the naked eye one week after infiltration. PASTEL produces large amounts of frequency domain impedance data captured continuously. This data is used to develop supervised machine-learning (ML) models for classification of HR. Input data (inclusive of the entire tested concentration range) is classified as HR-positive or negative with 84.1% mean accuracy (F1 score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h. With PASTEL and the ML models produced in this work, it is possible to phenotype disease resistance in plants in hours instead of days to weeks.


Asunto(s)
Nicotiana , Nicotiana/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Apoptosis/fisiología , Apoptosis/genética , Enfermedades de las Plantas/genética , Muerte Celular
3.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134163

RESUMEN

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioingeniería
4.
Pediatr Res ; 94(4): 1465-1471, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36841883

RESUMEN

BACKGROUND: Early detection of cognitive disability is challenging. We assessed the domain-specific, concurrent validity of the ages and stages questionnaire (ASQ-3) and the Bayley Scales of Infant and Toddler Development (BSID-III), and their ability to predict cognitive delay at school age. METHODS: Within a longitudinal birth cohort study, a nested cohort of children was assessed using ASQ-3 and BSID-III at 24 months, and at 5 years using the Kaufmann brief IQ test (KBIT). RESULTS: 278 children were assessed using BSID-III and ASQ-3 at 24-months; mean(SD) BW = 3445(506) grams, M:F ratio=52:48. ASQ-3 had reasonable predictive ability (AUROC, p value, sensitivity:specificity) of same domain delay for motor (0.630, p = 0.008, 50%:76.1%) and language (0.623, p = 0.010, 25%:99.5%) at 2 years, but poor ability to detect cognitive delay compared to BSID-III (0.587, p = 0.124, 20.7%/96.8%;). 204/278 children were assessed at 5 years. BSID-III language and cognition domains showed better correlation with verbal and nonverbal IQ (R = 0.435, p < 0.001 and 0.388, p < 0.001 respectively). Both assessments showed high specificity and low sensitivity for predicting delay at 5 years. CONCLUSIONS: The ASQ-3 cognitive domain showed poor concurrent validity with BSID-III cognitive score. Both ASQ-3 and BSID-III at 2 years poorly predict cognitive delay at 5 years. IMPACT: The ASQ-3 does not adequately detect cognitive delay or predict cognitive delay at 5 years, particularly for children with mild to moderate delay. The ASQ-3 shows reasonable concurrent validity with the motor and language subscales of the BSID-III. Neither early screening nor formal developmental testing demonstrated significant predictive validity to screen for cognitive delay at school age. This article highlights the need to analyse our existing model of using the ASQ-3 to screen for cognitive delay in children aged 2 years.


Asunto(s)
Desarrollo Infantil , Discapacidades del Desarrollo , Lactante , Niño , Humanos , Discapacidades del Desarrollo/diagnóstico , Estudios de Cohortes , Encuestas y Cuestionarios , Cognición
5.
PLoS Genet ; 19(1): e1010500, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656829

RESUMEN

The NRC immune receptor network has evolved in asterid plants from a pair of linked genes into a genetically dispersed and phylogenetically structured network of sensor and helper NLR (nucleotide-binding domain and leucine-rich repeat-containing) proteins. In some species, such as the model plant Nicotiana benthamiana and other Solanaceae, the NRC (NLR-REQUIRED FOR CELL DEATH) network forms up to half of the NLRome, and NRCs are scattered throughout the genome in gene clusters of varying complexities. Here, we describe NRCX, an atypical member of the NRC family that lacks canonical features of these NLR helper proteins, such as a functional N-terminal MADA motif and the capacity to trigger autoimmunity. In contrast to other NRCs, systemic gene silencing of NRCX in N. benthamiana markedly impairs plant growth resulting in a dwarf phenotype. Remarkably, dwarfism of NRCX silenced plants is partially dependent on NRCX paralogs NRC2 and NRC3, but not NRC4. Despite its negative impact on plant growth when silenced systemically, spot gene silencing of NRCX in mature N. benthamiana leaves doesn't result in visible cell death phenotypes. However, alteration of NRCX expression modulates the hypersensitive response mediated by NRC2 and NRC3 in a manner consistent with a negative role for NRCX in the NRC network. We conclude that NRCX is an atypical member of the NRC network that has evolved to contribute to the homeostasis of this genetically unlinked NLR network.


Asunto(s)
Proteínas NLR , Nicotiana , Proteínas NLR/genética , Proteínas NLR/metabolismo , Nicotiana/genética , Inmunidad de la Planta/genética , Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas
6.
EMBO J ; 42(5): e111519, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579501

RESUMEN

Nucleotide-binding domain leucine-rich repeat (NLR) immune receptors are important components of plant and metazoan innate immunity that can function as individual units or as pairs or networks. Upon activation, NLRs form multiprotein complexes termed resistosomes or inflammasomes. Although metazoan paired NLRs, such as NAIP/NLRC4, form hetero-complexes upon activation, the molecular mechanisms underpinning activation of plant paired NLRs, especially whether they associate in resistosome hetero-complexes, is unknown. In asterid plant species, the NLR required for cell death (NRC) immune receptor network is composed of multiple resistance protein sensors and downstream helpers that confer immunity against diverse plant pathogens. Here, we show that pathogen effector-activation of the NLR proteins Rx (confers virus resistance), and Bs2 (confers bacterial resistance) leads to oligomerization of their helper NLR, NRC2. Activated Rx does not oligomerize or enter into a stable complex with the NRC2 oligomer and remains cytoplasmic. In contrast, activated NRC2 oligomers accumulate in membrane-associated puncta. We propose an activation-and-release model for NLRs in the NRC immune receptor network. This points to a distinct activation model compared with mammalian paired NLRs.


Asunto(s)
Proteínas NLR , Inmunidad de la Planta , Animales , Proteínas NLR/química , Proteínas NLR/metabolismo , Plantas/metabolismo , Inmunidad Innata , Inflamasomas , Proteínas de Plantas/genética , Enfermedades de las Plantas , Mamíferos
7.
Elife ; 102021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34424198

RESUMEN

Eukaryotic cells deploy autophagy to eliminate invading microbes. In turn, pathogens have evolved effector proteins to counteract antimicrobial autophagy. How adapted pathogens co-opt autophagy for their own benefit is poorly understood. The Irish famine pathogen Phytophthora infestans secretes the effector protein PexRD54 that selectively activates an unknown plant autophagy pathway that antagonizes antimicrobial autophagy at the pathogen interface. Here, we show that PexRD54 induces autophagosome formation by bridging vesicles decorated by the small GTPase Rab8a with autophagic compartments labeled by the core autophagy protein ATG8CL. Rab8a is required for pathogen-triggered and starvation-induced but not antimicrobial autophagy, revealing specific trafficking pathways underpin selective autophagy. By subverting Rab8a-mediated vesicle trafficking, PexRD54 utilizes lipid droplets to facilitate biogenesis of autophagosomes diverted to pathogen feeding sites. Altogether, we show that PexRD54 mimics starvation-induced autophagy to subvert endomembrane trafficking at the host-pathogen interface, revealing how effectors bridge distinct host compartments to expedite colonization.


With its long filaments reaching deep inside its prey, the tiny fungi-like organism known as Phytophthora infestans has had a disproportionate impact on human history. Latching onto plants and feeding on their cells, it has caused large-scale starvation events such as the Irish or Highland potato famines. Many specialized proteins allow the parasite to accomplish its feat. For instance, PexRD54 helps P. infestans hijack a cellular process known as autophagy. Healthy cells use this 'self-eating' mechanism to break down invaders or to recycle their components, for example when they require specific nutrients. The process is set in motion by various pathways of molecular events that result in specific sac-like 'vesicles' filled with cargo being transported to specialized compartments for recycling. PexRD54 can take over this mechanism by activating one of the plant autophagy pathways, directing cells to form autophagic vesicles that Phytophthora could then possibly use to feed on or to destroy antimicrobial components. How or why this is the case remains poorly understood. To examine these questions, Pandey, Leary et al. used a combination of genetic and microscopy techniques and tracked how PexRD54 alters autophagy as P. infestans infects a tobacco-related plant. The results show that PexRD54 works by bridging two proteins: one is present on cellular vesicles filled with cargo, and the other on autophagic structures surrounding the parasite. This allows PexRD54 to direct the vesicles to the feeding sites of P. infestans so the parasite can potentially divert nutrients. Pandey, Leary et al. then went on to develop a molecule called the AIM peptide, which could block autophagy by mimicking part of PexRD54. These results help to better grasp how a key disease affects crops, potentially leading to new ways to protect plants without the use of pesticides. They also shed light on autophagy: ultimately, a deeper understanding of this fundamental biological process could allow the development of plants which can adapt to changing environments.


Asunto(s)
Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Phytophthora infestans/fisiología , Proteínas de Plantas/genética , Solanum tuberosum/genética , Autofagia , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología
8.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34417294

RESUMEN

Plants employ sensor-helper pairs of NLR immune receptors to recognize pathogen effectors and activate immune responses. Yet, the subcellular localization of NLRs pre- and postactivation during pathogen infection remains poorly understood. Here, we show that NRC4, from the "NRC" solanaceous helper NLR family, undergoes dynamic changes in subcellular localization by shuttling to and from the plant-pathogen haustorium interface established during infection by the Irish potato famine pathogen Phytophthora infestans. Specifically, prior to activation, NRC4 accumulates at the extrahaustorial membrane (EHM), presumably to mediate response to perihaustorial effectors that are recognized by NRC4-dependent sensor NLRs. However, not all NLRs accumulate at the EHM, as the closely related helper NRC2 and the distantly related ZAR1 did not accumulate at the EHM. NRC4 required an intact N-terminal coiled-coil domain to accumulate at the EHM, whereas the functionally conserved MADA motif implicated in cell death activation and membrane insertion was dispensable for this process. Strikingly, a constitutively autoactive NRC4 mutant did not accumulate at the EHM and showed punctate distribution that mainly associated with the plasma membrane, suggesting that postactivation, NRC4 may undergo a conformation switch to form clusters that do not preferentially associate with the EHM. When NRC4 is activated by a sensor NLR during infection, however, NRC4 forms puncta mainly at the EHM and, to a lesser extent, at the plasma membrane. We conclude that following activation at the EHM, NRC4 may spread to other cellular membranes from its primary site of activation to trigger immune responses.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas NLR/metabolismo , Nicotiana/metabolismo , Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Resistencia a la Enfermedad/inmunología , Proteínas NLR/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Receptores Inmunológicos/metabolismo , Nicotiana/inmunología , Nicotiana/parasitología
9.
Plant J ; 107(6): 1771-1787, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34250673

RESUMEN

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Asunto(s)
Cloroplastos/microbiología , Interacciones Huésped-Patógeno/fisiología , Nicotiana/microbiología , Phytophthora infestans/patogenicidad , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cloroplastos/efectos de los fármacos , Cloroplastos/inmunología , Dinitrobencenos/farmacología , Luz , Microscopía Confocal , Pinzas Ópticas , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/microbiología , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Sulfanilamidas/farmacología , Tiazolidinas/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/inmunología
10.
Proc Natl Acad Sci U S A ; 117(17): 9613-9620, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284406

RESUMEN

In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.


Asunto(s)
Cloroplastos/microbiología , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas NLR/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/metabolismo , Animales , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Silenciador del Gen , Microscopía Confocal , Proteínas NLR/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/genética , Plantones , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos Híbridos
11.
Elife ; 82019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31774397

RESUMEN

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Asunto(s)
Proteínas NLR/química , Proteínas NLR/inmunología , Inmunidad de la Planta/inmunología , Receptores Inmunológicos/inmunología , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis , Proteínas Portadoras , Muerte Celular , Técnicas de Inactivación de Genes , Modelos Moleculares , Proteínas NLR/clasificación , Proteínas NLR/genética , Filogenia , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de Proteína , Nicotiana/genética , Nicotiana/inmunología
12.
Elife ; 72018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29932422

RESUMEN

During plant cell invasion, the oomycete Phytophthora infestans remains enveloped by host-derived membranes whose functional properties are poorly understood. P. infestans secretes a myriad of effector proteins through these interfaces for plant colonization. Recently we showed that the effector protein PexRD54 reprograms host-selective autophagy by antagonising antimicrobial-autophagy receptor Joka2/NBR1 for ATG8CL binding (Dagdas et al., 2016). Here, we show that during infection, ATG8CL/Joka2 labelled defense-related autophagosomes are diverted toward the perimicrobial host membrane to restrict pathogen growth. PexRD54 also localizes to autophagosomes across the perimicrobial membrane, consistent with the view that the pathogen remodels host-microbe interface by co-opting the host autophagy machinery. Furthermore, we show that the host-pathogen interface is a hotspot for autophagosome biogenesis. Notably, overexpression of the early autophagosome biogenesis protein ATG9 enhances plant immunity. Our results implicate selective autophagy in polarized immune responses of plants and point to more complex functions for autophagy than the widely known degradative roles.


Asunto(s)
Autofagia/genética , Interacciones Huésped-Patógeno , Phytophthora infestans/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/inmunología , Autofagosomas/inmunología , Autofagosomas/parasitología , Autofagia/inmunología , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Regulación de la Expresión Génica , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/patogenicidad , Células Vegetales/inmunología , Células Vegetales/parasitología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Unión Proteica , Transducción de Señal , Solanum tuberosum/inmunología , Solanum tuberosum/parasitología
13.
J Exp Bot ; 69(6): 1325-1333, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29294077

RESUMEN

In plants, the highly conserved catabolic process of autophagy has long been known as a means of maintaining cellular homeostasis and coping with abiotic stress conditions. Accumulating evidence has linked autophagy to immunity against invading pathogens, regulating plant cell death, and antimicrobial defences. In turn, it appears that phytopathogens have evolved ways not only to evade autophagic clearance but also to modulate and co-opt autophagy for their own benefit. In this review, we summarize and discuss the emerging discoveries concerning how pathogens modulate both host and self-autophagy machineries to colonize their host plants, delving into the arms race that determines the fate of interorganismal interaction.


Asunto(s)
Autofagia/fisiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad de la Planta , Plantas/inmunología , Autofagia/inmunología , Plantas/microbiología
14.
Sci Rep ; 7(1): 1141, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28442716

RESUMEN

Pathogens secrete effector proteins to suppress host immunity, mediate nutrient uptake and subsequently enable parasitism. However, on non-adapted hosts, effectors can be detected as non-self by host immune receptors and activate non-host immunity. Nevertheless, the molecular mechanisms of effector triggered non-host resistance remain unknown. Here, we report that a small cysteine-rich protein PstSCR1 from the wheat rust pathogen Puccinia striiformis f. sp. tritici (Pst) activates immunity in the non-host solanaceous model plant Nicotiana benthamiana. PstSCR1 homologs were found to be conserved in Pst, and in its closest relatives, Puccinia graminis f. sp. tritici and Puccinia triticina. When PstSCR1 was expressed in N. benthamiana with its signal peptide, it provoked the plant immune system, whereas no stimulation was observed when it was expressed without its signal peptide. PstSCR1 expression in N. benthamiana significantly reduced infection capacity of the oomycete pathogens. Moreover, apoplast-targeted PstSCR1 triggered plant cell death in a dose dependent manner. However, in Brassinosteroid insensitive 1-Associated Kinase 1 (SERK3/BAK1) silenced N. benthamiana, cell death was remarkably decreased. Finally, purified PstSCR1 protein activated defence related gene expression in N. benthamiana. Our results show that a Pst-secreted protein, PstSCR1 can activate surface mediated immunity in non-adapted hosts and contribute to non-host resistance.


Asunto(s)
Basidiomycota/inmunología , Proteínas Fúngicas/inmunología , Proteínas de la Membrana/inmunología , Nicotiana/inmunología , Inmunidad de la Planta , Resistencia a la Enfermedad , Enfermedades de las Plantas/prevención & control , Triticum/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...